Open Source Software:

Free Provision of Complex Public Goods

July 2005
By James Bessen*

Abstract: Open source software, developed by volunteers, appears counter to the conventional
wisdom that without ownership rights or government intervention, public goods will not be
efficiently provided. But complexity makes a difference: contracts are incomplete and ownership
rights do not necessarily elicit socially optimal effort. I consider three mechanisms that improve
the provision of complex software: pre-packaging, Application Program Interfaces and Free/Open
Source software (FOSS). FOSS extends the range of products available to consumers,
complementing, rather than replacing, proprietary provision. Pre-packaged software addresses
common uses with limited feature sets, while firms with specialized, more complex needs use

FOSS.

JEL codes: H41, 122, 1.86

Keywords: Software, Contracting, Information Goods, Complexity

*Boston University School of Law and
Research on Innovation

202 High Head Rd.

Harpswell, ME 04079

ibessen @researchoninnovation.org

Thanks for helpful comments from Jiirgen Bitzer, Jacques Cremer, Paul David, Raymond Deneckere, Karim Lakhani,
Justin Johnson, Jean-Jacques Laffont, Lawrence Lessig, Mike Meurer, Philip Schroder, Jean Tirole, Eric von Hippel,
Jason Woodard, Brian Wright and participants at seminars at Harvard, IDEI, and Stanford. All errors are the author’s
responsibility.

1 — Open Source — 7/05

l. Introduction

On first examination, open source software seems paradoxical. Open source software is a
public good provided by volunteers—the “source code” used to generate the programs is freely
available, hence “open source.” Networks of thousands of volunteers have developed widely used
products such as the GNU/Linux operating system and the Apache web server. Moreover, these
are highly complex products and they are, arguably, of better quality than competing commercial
products, suggesting that open source provision may be highly efficient. This appears to counter
the common economic intuition that private agents, without property rights, will not invest
sufficient effort in the development of public goods because of free-rider externalities.

Much of the initial research exploring this apparent paradox has focused on the
motivations of individual programmers (See Rossi 2004 for a survey). Lerner and Tirole (2002)
attribute much individual motivation to reputation building and career concerns. Harhoff et al.
(2000) consider other individual motivations. Johnson (2002) and Kuan (2001) model individual
user/developers with common needs but with heterogeneous valuations and abilities. Survey
evidence suggests that individuals have a wide variety of motivations for participating in open
source development (Hars and Ou 2002, Krishnamurthy 2002, Ghosh et al. 2002, Hertel et al.
2003, Lakhani and Wolf 2005).

But it has become increasingly apparent that firms, and not just individuals, play an
important role. Many large firms such as IBM, HP, Computer Associates and Novell have
dedicated substantial resources to Free/Open Source software (FOSS) development. Although
some of these firms may contribute for strategic reasons, the software plays no such strategic role
for many firms, e.g., many of the firms contributing to Linux are not direct Microsoft competitors.
Indeed, many firms in the embedded software business (software embedded in electronic devices)
contribute code to Embedded Linux even though this is a core part of their business (Henkel and
Tins, 2004). And surveys show that about half of the entire development effort on FOSS projects
is performed by programmers at work with the knowledge of their supervisors (Lakhani and Wolf,
2005).! Although most of the contributors in the early years of Linux and Apache may have been

volunteers, firms and their employees appear to play a major, if not dominant, role today. And

! Lakhani and Wolf find that 38% of programmers contribute to FOSS at work with the knowledge of their
supervisors (another 17% contribute at work without the knowledge of their supervisors), but these
programmers contribute about 50% more hours than others. Analyzing his survey results, Henkel estimates
that about 90% of the effort on embedded Linux is made by programmers at work (private communication).

2 — Open Source — 7/05

firms appear to have very different motivations than individuals to participate in FOSS
(Bonaccorsi and Rossi 2004).

This paper asks whether there is a sound economic reason why firms contribute to FOSS
development even when proprietary products are available from non-rival firms. This inquiry may
reveal something about the limits of effective proprietary provision. Also, it may help explain why
FOSS appears so robust in some markets, with FOSS products successfully challenging well-
funded proprietary products in areas such as web servers (Apache), server operating systems
(Linux) and embedded systems (embedded Linux). This success and the continued rapid growth of
FOSS developers and projects? seem hard to reconcile with a movement based solely on
programmers’ reputations and similar personal motivations.

Several research papers have studied duopoly competition between a commercial software
firm and a community of volunteers (Kuan 2001, Casadesus-Masanell and Ghemawat 2003,
Mustonen 2003, Bitzer 2004, and Gaudeul 2005). But these papers assume that the programming is
done by volunteer programmers, not by profit-seeking firms.3 In contrast, my paper begins by
looking at why firms might make major contributions to FOSS even when a commercial product is
available.

Perhaps firms are motivated mainly by the personal motivations of their employees—that
is, firms allow employees to participate in FOSS projects as a kind of fringe benefit. This
explanation has problems, however. For one thing, this raises the question of why this would be a
superior fringe benefit to traditional benefits and, if so, then why these kinds of fringe benefits
have not been seen before. Also, this would seem inconsistent with some of the explanations of
personal motivation. For example, if employees are motivated by job signaling, then a firm would
hardly want its employees to signal their value to other prospective employers by participating in
FOSS development on company time. Although personal motivations are surely for both hobbyists
and employees, profit-driven firms may have good reason to contribute to FOSS development even
when commercial substitutes exist.

Of course, firms might choose to support FOSS as a simple public good. But the general

intuition from the literature is that privately provided public goods are under-provided, delayed, or

2 SourceForge, one website where many FOSS project and participants register, 900,000 participants and
86,000 projects (8/2004) and continues to grow.

3 In Bitzer (2004) a profit seeking firm distributes open source software, but does not develop it.

3 — Open Source — 7/05

of inferior quality (Bliss and Nalebuff 1984, Palfrey and Rosenthal 1984, Johnson 2002).# Yet if a
high quality, efficiently provided commercial software substitute is already available, one would
expect gains from trade. Assuming that the marginal cost of software is small, the commercial
software provider could charge something less than the customer firm’s private value, but more
than the anticipated contribution of the customer firm to the FOSS project. Then customer firms
would purchase the commercial product instead of participating in FOSS and the commercial
provider would make additional profits.

Another possibility is that firms participate in FOSS because the availability of free
software increases sales of complementary hardware or services. Casual empirical evidence
suggests that many companies participating in FOSS do sell complementary products. But here,
too, a commercial software provider should be able to realize profits by selling an appropriately
priced substitute, providing mutual gains from trade. This is true as long as the commercial
software provider is willing to sell. However, if the commercial software provider also sells rival
complementary products or services and is engaged in a strategy of predatory tying, then it may not
offer to sell on favorable terms. This may explain a portion of FOSS activity, e.g., some companies
supporting Linux have also sued Microsoft for antitrust violations. However, many of the firms
contributing to Linux are not clear rivals to Microsoft, so this is at best a partial explanation for
firm participation in FOSS.

Perhaps asymmetric information or transaction costs prevent trade from taking place
between a commercial software provider and a firm considering contributing resources to FOSS.
But this by itself is not an adequate explanation of the FOSS phenomenon. Transaction costs and
asymmetric information have affected many markets for many years, yet few can be said to exhibit
anything like FOSS. Instead, a variety of contractual mechanisms, price discrimination, etc. are
seen as ameliorating transaction costs in many markets.

I argue that a particular feature of software makes contracting difficult, namely,
complexity. Moreover, complexity shapes private mechanisms to counter this obstacle and it
provides a reason for firms to contribute to FOSS.

Typical software products have large numbers of features and the number of possible
interactions between these features can be astronomical. A “successful” software innovation
tailors these interactions so that the software performs well for a customer’s needs. The role of

complexity has been recognized in the economics literature on contracting (Segal, 1999, Hart and

4 Bitzer and Schroder (2005) model a public good game for open source software where the software is
produced without delay, but this model is based on signaling benefits to individual programmers.

4 — Open Source — 7/05

Moore, 1999, Tirole, 1999) and complex contingencies are described as a source of high
transaction costs more generally.

As in other markets, a variety of mechanisms are used to facilitate transaction and
overcome the difficulties imposed by complexity. I explore two of these in the context of my
model: pre-packaged software, where a large number of software features are bundled together,
and an application program interface (API), where a set of bundled features can be accessed by
customized programs. In short, there is not a single form of proprietary provision of software, as is
often assumed. Both my model and empirical evidence point to a variety of forms of provision.

In my model, FOSS is yet another mechanism that allows some user needs to be met with
greater efficiency. In this sense, FOSS is not an alternative to proprietary development, but a
complement; it extends the market. In this model, FOSS does not displace a pre-packaged software
monopolist, although the monopolist will charge lower prices and will lose API sales. Instead, pre-
packaged software is sold for simpler applications used by large numbers of customers. Firms with
specialized needs and more complex applications use FOSS.

This highly stylized model appears to provide a simple explanation for several observed
features of software markets: the emergence and growth of the pre-packaged software segment as
the markets grew in size; the persistence of self-development and contract programming despite
this growth; the development of APIs; the coexistence of proprietary and FOSS development with
successful FOSS projects tending to more complex, “geekier” applications.

The apparent paradox about efficient provision of a public good posed above is resolved
because software is not a simple public good; it is instead a complex public good, used in many
different applications by highly heterogeneous users. A FOSS software product includes a variety
of features used in a non-rivalrous, non-excludable way. At the same time, it may contain
combinations of features that meet unique needs of individual consumers. This makes a difference
to the efficiency of provision.

The next section considers the role of complexity and the difficulty of contracting for
software development. Section 3 develops a formal model and applies it to pre-packaged software,

and APIs, and FOSS. Section 4 concludes.

5 — Open Source — 7/05

2. Background: Complex products

2.1 Complexity and contracting

I begin with a version of Aghion and Tirole’s model of innovation (1994) adapted to a
setting where customers for software innovations may also develop software. Aghion and Tirole’s
model concerns the problem of designing a contract or an allocation of ownership rights that elicits
a socially efficient allocation of effort (or other unobservable investments) from the two parties. A
key result is that proprietary provision—either through contracting or through a simple allocation
of property rights—may be socially inefficient when a complete contract cannot be written for an
innovation, that is, the innovation is ex anfe indescribable.> Contracting over software generally
has this difficulty: the software code itself is the complete description of how the software will
function in every circumstance and, consequently, writing a contract that covers every contingency
costs roughly the same as writing the software itself. Practical contracts for software will thus not
completely specify all details, interactions and contingencies.

This difficulty arises from the complexity of software. As noted above, the literature on
incomplete contracts has recognized the problem posed by complexity. Building on this line of
thought, a key insight of this paper is that the structure of this complexity also gives rise to
mechanisms that can overcome the inefficiencies of proprietary software provision, at least
partially. During the early decades of the computer industry, almost all software was either
developed by the customers themselves or developed under individual contracts, often with the
computer manufacturer. A series of organizational innovations, however, have allowed the
software industry to evolve more sophisticated (and presumably socially preferable) mechanisms
to provide software.

The first innovation, pre-packaged software, works by combining a select group of
features in a pre-programmed bundle. Multiple customers can then purchase this bundle in
efficient arm’s-length transactions. I show that this form of proprietary provision is socially
efficient for those customer’s whose needs are met by the features in the bundle. However, in
sufficiently complex environments, many customers’ needs will not be adequately addressed by

pre-packaged software. Pre-packaged software firms can also produce customized versions for

5 Other necessary conditions are that innovative effort is also non-contractible, ex post renegotiation cannot
be ruled out and there is a single customer.

6 — Open Source — 7/05

some of these customers under contract, but I show below that this does not generate socially
efficient outcomes.

A second innovation that allows pre-packaged software firms to more efficiently address
some specialized needs is the applications program interface (API). In a situation where a pre-
packaged software product includes some, but not all, of the features that a customer needs, the
software firm also sells the tools to access functions performed by the code. Using these functions,
a customer can reduce the effort needed to develop the software themselves. The API does allow
more efficient innovation for some customers, but some customers are priced out of the market at
the software firm’s optimal price for the APL

Free/Open Source software development provides yet additional social welfare gains.
With FOSS, customers can use publicly shared source code instead of an API. This reduces their
required development effort as above. Because the code is freely available, even firms priced out
of the market for the API can develop more efficiently. Moreover, because these firms share their
code in turn, the base of available code can grow far greater than the code available in commercial

APIs, allowing far more complex applications to be developed efficiently.

2.2 The cost of complexity

Why are software programs complex? They typically include many features that work
together to meet heterogeneous needs. Because consumers have different preferences for each
feature in a complex product, they use different combinations of features. This differs from simple
commodities because, in effect, the customer consumes only a specific instance (the “use-
product”) of the general product the firm sells. The firm sells a single product with a large number
of features that may be optionally used with each other, making a large number of possible use-
products of which only one may be of interest to any particular customer consumer.

This distinction creates a real economic difference when the software development firm
faces a cost, even a slight cost, for each use-product. And indeed, the quality of software depends
on the extent to which different use-product combinations are worked out, tested and debugged.
Because the features in a complex software program interact with each other, each use-product

must be individually tested to ensure that it works. Yet firms cannot feasibly test all possible use-

7 — Open Source — 7/05

products because the number of possible combinations is astronomical.® For example, Cusumano

and Selby (1995, p. 310) describe the complexity facing Microsoft’s operating systems:
The many testing approaches Microsoft uses to evaluate products prior to release are still
insufficient to detect all errors due to the very large number of combinations of product usage
scenarios that can occur. The various commands, data inputs, and underlying system
configurations can cause a possibly infinite number of combinations. For example, assume the
following: A systems product has 100 features. Each feature has 1 normal execution
completion and 2 error messages it could generate. The product runs on 20 different vendors’
disk drives. It should run in 4, 8, 16, or 32 megabyte (MB) of memory. The product should
run with 15 different vendors’ printers, and 5 different vendors’ video cards. It should support
100 of the most popular applications and the 50 most frequently used commands for each of
these applications. In order to simply begin testing this product, testers would have to set up a
lab that could support over 9 billion combinations of usage scenarios (because 100 x 3 x 20 x

4 x 15 x 5x 100 x 50 is equal to more than 9 billion). Even if such a lab were practical, it
would not be cost-effective—and this list of combinations is incomplete by far.

This complexity has at least three consequences: it affects the way pre-packaged software
companies develop their products, it causes pre-packaged software firms to limit the number of
features in their products, and it drives up the cost of specifying customized contracts.

To limit costs associated with the interaction of features, software firms build products
using “structured code” and “object-oriented” regimens that help reduce interactions and help
locate incorrect interactions that cause bugs. Firms also use a wide variety of testing techniques,
including automated testing (Cusumano and Selby, 1995, chapter 5). And they provide partially
debugged code to limited groups of customers for “beta” testing (Cusumano and Selby, 1995, p.
310). Also, they do not test exhaustively; rather, products are released when bug discovery rates
fall below a specified level.

Nevertheless, complexity insures that most of the cost of software arises from testing,
debugging and customer maintenance (that is, fixing bugs or providing work-arounds after product
release), not from the original design and coding. One study found that testing, debugging and
maintenance account for 82% of the cost of software (Cusumano, 1991, p. 65). In 1995, Microsoft
employed 3,900 engineers for testing and customer support (Cusumano and Selby, 1995, p. 51).
Yet it only employed 1,850 software design engineers and these split their time between initial
coding and debugging.

Complexity-related costs also limit the ability of packaged software to meet all consumer

needs and some consumers turn to custom programming and self-development. In the 1950’s and

6 If a product had 100 independent features and each combination took only one second to test, then the job
could not be finished before the sun is predicted to swallow the earth even if every human currently alive
spent every second until then testing.

8 — Open Source — 7/05

60’s, owning a computer almost always meant either self-developing or contracting custom
software development. Proprietary software consisted of limited applications that were almost
entirely sold bundled with computer hardware. Little packaged software was sold until the 1970’s
(Grimm and Parker 2000), when IBM was challenged by private and government lawsuits to
unbundle, and when mini-computers became widely used. As Figure 1 shows, pre-packaged
software has grown, especially with the dramatic expansion of the computer market with low cost
personal computers beginning in the 1980s.

This growth in market share has been accompanied by dramatic growth in product
complexity. Competing software firms, attempting to reach ever-larger markets, engage in “feature
wars,” adding large numbers of new features to product revisions, encouraging upgrades and
hoping to increase market share. The result is an intense pressure to add new features. This
growing complexity is evident in five Microsoft product upgrades that occurred during the late
80’s and early 90’s (Cusumano and Selby, 1995, p. 224 and 246). The number of lines of source
code in each product grew substantially from one version to the next, the increases ranging from
31% to 109%.

Yet despite this rapid growth in features and despite the implied rapid acceleration in
debugging, testing and maintenance costs, pre-packaged software appears to have reached some
significant limits—it has failed to account for as much as 30% of total software investment
(Grimm and Parker 2000). Despite the common view that Microsoft is the prototypical software
company, most software investment involves self-developed software or contract programming
and neither Microsoft nor the other pre-packaged software companies have been able to adequately
address the needs of a substantial portion of the market.

When standardized software packages fail to meet such specialized needs, users develop
their own software or contract with someone else to develop it for them, as the figure shows.
Frequently, a user does not need to code an entire program from scratch, but can utilize
“developer’s toolkits” for packaged software.

An alternative approach is for users to modify a Free/Open Source program. A key feature
of FOSS is that the code is available for users to freely modify—this is the sense in which the code

is “free,” not so much that the software has nominal price of zero.” This feature is significant,

7 As Richard Stallman famously says, Free Software is “free as in free speech, not as in free beer.” Copyleft
software requires modifications of the code to be shared if they are distributed, thus ensuring a dynamic code
base. License agreements for “open source” software do not have this requirement, but nevertheless code
modifications are frequently shared. This occurs for two reasons. First, strong community norms support free
re-distribution—few programmers want to contribute code enhancements to projects that will be taken

9 — Open Source — 7/05

because open source advocates claim that this provides a substantial advantage in developing
complex software products of high quality (Raymond).

A brief look at one FOSS product, the Apache web server, illustrates the importance of
specialized needs not addressed by competing pre-packaged software products. The Apache server
competes directly with Microsoft’s IIS server and other proprietary products (Microsoft provides
this software bundled with some versions of its Windows operating system). But despite this
competition, over 60% of active web sites use the Apache web server (Netcraft) and a major
reason is its customizability. In a usage survey of Apache security features, Franke and von Hippel
(2002) found that over 19% of the firms using Apache had modified the code for these features
themselves and another 33% customized the product by incorporating add-on security modules
available from third parties.® Open source code facilitates the provision of add-on modules and
over 300 of these have been developed for Apache.?

Moreover, many of these private enhancements are shared with the community and
incorporated in new versions of the product. During the first three years of Apache, 388 developers
contributed 6,092 feature enhancements and fixed 695 bugs (Mockus et al, 2000). This rate of
feature enhancement far exceeds the rate for comparable commercial products (Mockus et al,
2000, Table 1).10 Thus the open source code permits customization, facilitates third-party add-ons,
and allows a wide range of users to incorporate new features and fixes, all improving the ability of

Apache to meet specific users’ needs. The breadth and dynamism of this participation demonstrate

private. Second, because many open source projects improve rapidly over time, it is advantageous to have
enhancements incorporated in the free code. This eliminates the cost of re-incorporating code changes each
time a new version is released. Thus the sharing of modifications, bug fixes and enhancements is an important
part of all open source development.

8 Security features represent only a fraction of Apache’s total feature set, so, presumably, the total extent of
customization is even greater.

9 Apache Module Registry, http://modules.apache.org/, accessed 5/2002 with duplicates and bad records
eliminated. Open source facilitates add-on development because the source code is accessible and because
user customization helps create new add-ons. Indeed, Apache seems to have a much more active group of
add-on developers compared to Microsoft’s web server (IIS), which lists only 11 companies producing add-
ons. See Microsoft, “IIS-Enabled Products from Industry Partners,”
http://www.microsoft.com/windows2000/partners/iis.asp, accessed 5/2002.

10 This dynamic process of improvement-by-user-modification also appears to raise the quality of open
source software. Kuan (2001) found evidence that complex open source projects had more effective
debugging. And Miller et al (1995) found that open source Unix operating systems were noticeably more
reliable than their commercial counterparts, even though the latter had been in use much longer.

10 — Open Source — 7/05

the degree to which open source software extends the market. The many firms who customize
Apache represent consumers whose needs are largely not met by proprietary products.!!

Thus the complexity of software imposes costs on the provision of pre-packaged software
that causes firms to limit the feature sets of this software, limiting the extent to which pre-
packaged software addresses all users’ needs. These needs can be further addressed by other
organizational arrangements including APIs and FOSS. But clearly, a realistic appraisal of
different modes of software provision has to account for a richer set of relationships between
developer and customer than is the case for simple standardized commodities.

Complexity affects the relationship between developer and customer as well, however. In

the next section I present a highly stylized model of this interaction.

3. Model

3.1 Contracting complex software development

Consider a case where a customer firm wants to contract with a commercial software
development firm to write some customized software. Such contracting is notoriously difficult.
Suppose that out of M possible features, the customer can identify m features likely to be important
in this custom application. Even so, there are still a very large number of interactions between all
of these features and it may (or may not) make a big difference to the customer how each of these
interactions is coded. For example, if a word processing program determines that all of the
characters in a line on the screen will not fit on a line when output on a given printer with a given
font, should the program break the line before the last word, hyphenate the last word, squeeze the
words together, squeeze the letters together, or do something else? Such details may determine
whether the program works successfully for the customer, yet it is unlikely that the customer will
be able to specify all such details in a contract.

Although the number of “features” in a product may be difficult to enumerate, I wish to

capture the notion that the number of combinations of features grows exponentially with the

11 Note that very little of this customization effort can be attributed to firms attempting to economize by using
a free product and then correcting deficiencies through customization. The second most popular web server,
Microsoft’s IIS, is free for users of the Windows operating system. Apache runs on Linux (free), on
proprietary Unix and also on Windows. If one assumes that these operating systems are equivalent for
running web servers, then Apache offers no direct cost saving relative to IIS. Even if Linux were inferior to
Windows, but could be fixed through customization of Apache, the cost difference would be minor—the
price of Windows is $300 or less per license. Thus few firms would plausibly customize Apache to
compensate for major deficiencies in Linux.

11 — Open Source — 7/05

number of features. If we assume for the sake of concreteness that each feature can interact with

all other features in just two ways, then there are 2™ such interactions and it will be very costly to
write them all into a contract. Moreover, much of the work of figuring out these details is what the
customer pays the developer for. That is, typically the developer gets a general idea of how the
customer wants the program to work, then makes educated guesses about how the interactions
should be coded, and allows the customer to review and modify these decisions.

The situation can be interpreted as an instance of indescribability. In Hart and Moore’s
(1999) terminology, the customer needs a “special widget,” but is unable to specify in advance
exactly which widget it needs among a large number of widgets.

To model this interaction, I start with a version of Aghion and Tirole’s (1994) model of
innovation. This model concerns two agents—firms in this case—the “developer,” who obtains no
use value from this software, and the “customer,” who obtains value V from successfully
developed software. This value is known to both parties, both are risk neutral and I initially assume
that the developer cannot sell the software to another party other than the customer.

The developer and the customer can exert development efforts e and E, respectively. That
is, e is outsourced development effort and E is inhouse development effort. These levels of effort
are not directly contractible so there is moral hazard. To simplify things, I assume that both agents
have an equal ability to develop software, that is, the customer is a “user-developer.” Clearly,
differences in programming competencies can affect contracting and also decisions regarding
FOSS participation (see, for instance, Kuan 2001). However, the focus here is on contractual
mechanisms, ownership and organizational arrangements, so this simplification aids the
exposition.

The expended effort increases the probability, p, that the software will be successful (that
is, delivering value V to the customer). Since both agents have equivalent programming

competencies, I assume that e and E are perfect substitutes and p = p(e +E) . I follow Aghion

and Tirole and assume that p is increasing and concave and p(0)=0. Also, to guarantee an interior
solution, p’(0) is infinite and p < 1.

The innovation or development project is ex ante partially indescribable; it cannot be
written in a contract that can be enforced by a court or other third party. The problem is to design a
contract or an allocation of property rights that elicits a socially optimal level of e and E. An
inefficient contract or rights allocation will fail to reach these levels, resulting in a level of

innovation that is less than the social optimum.

12 — Open Source — 7/05

The interaction takes place in three stages: 1.) the parties draw up a contract that possibly
specifies a license fee and ownership rights, 2.) the parties invest e and E. 3.) If the development
effort is successful (which customers can determine costlessly), then the parties may choose to
renegotiate the license fee (which cannot be ruled out in the contract). Following Aghion and
Tirole and the bargaining literature, I assume that in this case, the parties split the bargaining
surplus equally. Note that the initial license fee is ultimately replaced by the “real” license fee
negotiated in stage 3. Following Aghion and Tirole, the agents are given only one chance to make
a successful innovation (e.g., the customer cannot contract for development and then, if that fails,
develop herself) and there is no time discounting.

Given licensing fee y that is paid only in the event of success, the developer maximizes

utility p(e +E) y — e and the customer maximizes utility p(e +E)(V - y) -E.

Consider contracts that assign ownership of the code to one party or the other. These are
shown in Figure 2. First, if the customer owns the code, then under the optimal contract all
development will be performed by the customer (e = 0), that is, this describes the case of “self-

development.” The customer exerts effort £* which maximizes its utility:

(1) E*: mgx[p(E)V - E]

This is a socially efficient level of effort.

On the other hand, if the developer owns the rights to the code, then, if the development
effort is successful, the parties bargain in stage 3 and each receives V/2. Considering this, in stage

2, the Nash equilibrium is one where each party maximizes their utility holding the other party’s

effort fixed:
14 v
(2) maX[p(e+E)E - e} and mélx[p(e+E)3 - E}

Straightforward calculation shows that this form of proprietary provision yields a level of effort
below the social optimum. Moreover, the customer makes out better under self-development.

So in this simple case, customers will choose to self-develop rather than to contract and
self-development is socially efficient, but contracting is not. Of course, firms do contract for
software development, but this model suggests that something other than simple contractual issues
may be at play, e.g., the customer firm may have inferior competency at software development.
Nevertheless, this highly stylized model highlights the difficulty of contracting for software

development, setting the stage for consideration of mechanisms to overcome this obstacle.

13 — Open Source — 7/05

Note that in this setting I have assumed that the customer can choose the initial assignment
of ownership rights. This would be the case with copyright and trade secrecy protection, but not
necessarily with patents. The developer could unilaterally patent an essential software concept,
guaranteeing ownership in stage one prior to development of the code.!? Then the developer could
insist on contracting, resulting in socially inefficient proprietary development. That is, in this
setting, patent rights may actually decrease innovation. In what follows, I develop the model

assuming only copyright and trade secrecy rights, but I comment on effects of patents below.

3.2 Pre-packaged software

The social inefficiency of contracting (or of an initial allocation of property rights to the
developer with no contract) may be seen as an instance of a more general result obtained by
Aghion and Tirole. They point out that this result depends on the indispensability of the customer,
that is, there is only one customer for this product. If there were more customers, then two things
might improve the incentives for the developer: first, the developer may gain bargaining power in
the stage three negotiation. In typical bargaining models with an outside option, the ability of the
developer to stop bargaining with one prospective customer and switch to another gives the
developer leverage. Second, if the developer can sell the same code to multiple customers (i.e.,
they are not competitors wanting exclusivity), then the incentives for proprietary development may
be larger than for self-development (ignoring the possibility of self-developers also selling a
proprietary product).

So an institution that allowed multiple customers for a single development effort might
yield greater social welfare. One might suppose, in fact, that pre-packaged software corresponds to
just this case. But there is a potential logical inconsistency with such an interpretation. How can a
developer know that there are, say, N customers for a specific product? If a developer cannot know
the “special widget” customer A needs, how can the developer know that customers B and C also
need the same special widget? This seems implausible. Even if the developer knows that A, B, and
C are in the same general line of business, this does not mean that all aspects of the software will
be identical; each firm will likely have highly idiosyncratic needs.

On the other hand, it does seem that the developer might be able to obtain some knowledge
about demand for certain groups of features without necessarily knowing ex ante all of the specific

details needed to satisfy that group of customers. For instance, a developer might guess that color

127 assume here that a patent can be obtained without actual development of the code, consistent with court
recent decisions on enablement.

14 — Open Source — 7/05

printers might be useful features to add to computer systems (with the associated software support)
without necessarily knowing all the details of how color printers might interact with other
components of the software system. Moreover, a developer might plausibly build a prototype and
test market the general appeal of such a system, again, without necessarily working out all the

details in advance. Thus the developer can know the expected demand for a product with m

features, but this product can be used in 2™ different ways—that is, it has 2™ different use-
products—and the developer does not know the demand or the customer identities for each of
these. This is, of course, a highly stylized treatment. In reality, developers are likely to have some
information that some combinations of features may be more highly desired. Nevertheless, this
captures the difficulty that firms have in managing complex interactions between features, as
described in the Microsoft example above.

I model this limited knowledge formally as follows: a developer knows ex ante the
expected number of customers, N, who will want a use-product involving the first m features
(ranked in order of demand) of the M possible features. The developer does not know ex ante the
specific use-product each of these customers wants; the developer just knows the total expected
number of customers wanting use-products in the group using those m features. I assume that
N = N(m) includes the number of customers who want combinations of anywhere from 0 to m of
the first m features. This is thus an increasing function and, since the features are ranked in order
of their popularity, there are diminishing returns relative to the number of use-products, that is,
d* N

du’

<0, u=2".

Pre-packaged software can then be interpreted as a strategy to develop all of the use-
products created by combinations of the first m features. This can be compared to self-
development in a revised version of the model. In this version, I change the stage timing slightly.
Now, in the first stage (see Figure 3), the software developer decides a level of effort, e, and a
number of package features, m. In the second stage, prospective customers observe whether the
package successfully addresses their use-product and they decide to exert a level of effort, E, at
self-development. If self-development fails, then customers still have the option to purchase the
product at price w in stage 3. I also explored a model where the customer’s decision to self-
develop is made simultaneously with the developer’s allocation decision in stage one. As long as
the market is large enough, I find the main results of that model to be the same as the results of this
model. Since this model is simpler to develop and because it provides a slightly more challenging

problem for the software developer, I use this version in the exposition.

15 — Open Source — 7/05

To complete the model, I specify several other details. Customers derive varying levels of

utility, V., from their respective use-products. Let V, be distributed according to a distribution
function F(-) over support 0 <V, < V without gaps. As before, each customer receives zero

utility from other use-products. I assume that V; is uncorrelated with the number of features the

customer desires. If these were correlated, then the firm could engage in “versioning,” providing
different versions of the software package (with some features disabled) to some customers at a
different price. For simplicity, I leave out such considerations.

Of course, the more features included in a product, the greater the development effort
required. To capture this notion, interpret e (or E) as the intensity of effort expended over a given

number of tasks. Let the number of tasks increase with the number of use-products supported.

Thus the developer’s disutility for developing a product with m features is e - (CO +c2") where

¢, represents the tasks associated with initially coding the product, including the initial coding of

each feature, and c represents the tasks associated with debugging and maintaining each use-
product. In a more realistic model, the disutility of initial coding might increase with the number of

features, m. Adding this source of variation makes the model more complicated without, however,

affecting the basic insights; keeping ¢, constant captures the basic intuition that debugging and

maintenance costs will substantially exceed the costs of initial coding. Given this assumption, a

customer developing just a single use-product faces a disutility of E - (CO + c).

I assume that only a single firm develops a software package for the given market. With
Bertrand competition, no rival would choose to enter the market with the same package of features.
Competing firms might choose to develop different bundles of features, perhaps overlapping the
first firm’s feature set to some extent. This may give rise to a “features war,” but such
considerations are beyond the scope of this paper.

Given this, the firm will set a package price, w, in the third stage by solving a monopoly
pricing problem, assuming zero marginal cost to reproduce software and assuming that the firm

cannot price discriminate. Let G(w) represent the share of prospective customers for the pre-

packaged product for whom V, > w and who have not successfully self-developed in stage 2.

Then the firm’s optimal price is

3) W =argmax[w- G(w)].

w

Note that the firm cannot credibly commit to a different price in stage two.

16 — Open Source — 7/05

The function G depends on the distribution F and the customers’ decisions about self-

development in stage two. If V, < w or if the pre-packaged software does not successfully address

the customer’s application, then a customer has no alternative but to self-develop with expected

net utility of

@ m, (V) = max[p(E)V, - E- (¢ +)l.

If, on the other hand, V; > w and the package does address the customer’s application, the

customer will still choose to exert some effort at self-development, and then purchase in stage

three if this is not successful. In this case, the customer’s optimal effort is

E(w) = argmax[p(E)V, +(1— p(E))V, —w)—E - (c, +0)]

)
:aurgmalx[p(E)w—E-(c0 +0)l, V.>w
E

Note that this effort is independent of the customer’s individual valuation as long as V; > w . This
means that

© G = (1-Fw)(L- plEow)).

It is then straightforward to show that 0 < w < V . Also, note that E is strictly positive (although
it may be quite small if ¢, is large), so that all customers exert at least some minimal effort at self

development (recall the assumption that p’(0) = o).

The pre-packaged software firm then maximizes expected profits:

(N D

T = max[p(e)N(m)WG(W) - e-(co +C2m)]

where e* and m* are the level of effort and the number of features at the maximum. It is
straightforward to show that this profit function is concave, however, m* may take a corner

solution, m* = M or an interior solution, 0< m* < M . Also, e*>0.
There are two main reasons why a customer might choose not to purchase the software

package: because the price is too high (V, < W), or because the product is too simple,

(m* < m).13 If a customer firm does purchase the packaged product, then it receives greater utility

13 Also, it may happen that a customer who can afford the package happens to be successful self-developing
in stage two. Note, however, that if ¢, is large, then this is unlikely (that is, p E (VT/)) will be small) and, as

noted, customers may exert zero effort if p’ is finite.

17 — Open Source — 7/05

than from self-development from scratch, so in this case, efficiency is enhanced. From this it
follows:

Proposition 1. Pre-packaged software improves social allocation of effort over what can be
achieved by self-development or contract programming. However, this is not true for all

potential customers. In particular, low value customers (low V) and customers with complex

applications (high m) will choose self-development over purchasing pre-packaged software.

Remark 1: By taking the implicit derivative of (7), it is easy to show that m* increases with
the magnitude of N. This provides a simple explanation as to why pre-packaged software was not
widely used during the early decades of computing and why the market share of pre-packaged
software has been associated with the tremendous growth in the overall size of the software market
accompanying low cost personal computers.

Remark 2: This kind of bundling of features into a single product to serve heterogeneous
customers occurs, of course, with all sorts of other goods. For example, automobiles are sold with
many options effectively built in to their production (although not necessarily included in the
version each customer purchases). Two characteristics may make this issue particularly important
for software. First, software products tend to be quite complex, that is, M is quite large and likely
to exceed m*. Second, trade secrecy of source code means that customers of pre-packaged
software are not free to modify the product. This is not so for many physical goods, e.g., cars can
be modified without special rights from the manufacturer. To the extent that other goods share
these characteristics with software, much of the analysis applies to these goods as well as to

software.
Remark 3. It may seem counter-intuitive that low value customers (low V) will self-
develop. This is a consequence of the properties of p chosen to insure an interior solution. In a

more realistic setting, low value customers will have a corner solution where they do not self-

develop.

3.3 Proprietary extensions

Once a pre-packaged software product is successfully established, then secondary
possibilities for greater social efficiency arise. This is because software code developed for the

pre-packaged product can be reused. That is, the monopolist has already coded a basic product

associated with effort e *-c . If this code can be reused, then the development effort necessary for

a custom application that incorporates some or all of these coded features is less. In this new

18 — Open Source — 7/05

setting, assuming that a successful pre-packaged software product already exists, let the additional

disutility of effort needed for a custom application be only e-c,, or E-c,,, depending on who

t ext ?
performs the work. The socially optimal level of effort to customize a use-product not included in
the software package is

(8) E*: argmax[p(E)Vl. - E'cm].
E

This is larger than the effort exerted under self-development from scratch in (4) as long as
¢, <¢,+c,which one would expect.

Two proprietary forms of provision allow a pre-packaged software monopolist to reuse
code: the monopolist might contract individually with individual customers in addition to
providing a software package, and the monopolist might offer a developer’s toolkit supporting an
API. Both of these devices allow the monopolist to better address the needs of those prospective
customers whose needs are too complex for the pre-packaged product.

Consider individual contracts first. As before, the specification of the use-product is ex
ante indescribable and, as a result, the parties split the bargaining surplus in stage 3. The
monopolist’s effort toward a custom project utilizing this base code is the value of e that

maximizes
V.
(9) p(e)?l - e'cexr'

By comparison with (4), the monopolist’s effort under a custom contract will exceed the

customer’s effort at self development as long as ¢, +¢ > 2c¢,, , although this is still less than the

ext ?

socially optimal level of effort. Moreover, the customer’s expected utility under a custom contract,
p(e)? , may be greater or less than the customer’s utility from self development given in (4).

Consequently, the customer may or may not choose to contract with the monopolist.

Another approach is for the monopolist to sell a developer’s toolkit to access an
application program interface (API). Let the monopolist’s price for the toolkit be w,,, . The
customer will then realize a gross profit

(10) 75, (V) = max|p(E)V, - E-c,,]

and a net profit of Egpl (V.) —w,p, . The monopolist will choose a revenue maximizing price,

W, » and at this price, some customers will purchase the developer’s toolkit and some will self-

develop from scratch. Those customers who do choose to purchase the toolkit will exert a socially

19 — Open Source — 7/05

optimal level of effort that exceeds the effort of the monopolist under a custom contract or of the
customer developing entirely from scratch. Thus,
Proposition 2. For prospective customers whose applications are too complex to be handled
by a pre-packaged software product, a software monopolist can offer a custom programming
contract or a developer’s toolkit with associated API. These alternatives provide some of
these customers a more profitable and socially efficient alternative to developing the software

themselves from scratch. However, not all such prospective customers will be able to
profitably take advantage of these alternatives.

3.4 Free/Open Source Software

These extensions to pre-packaged software work because they permit the reuse of base

code incorporated in the packaged product, represented by ¢, . Either the monopolist, in the case

of contract programming, or the customer, in the case using the API, is required to exert less effort
than if the customer were developing their software from scratch.

Once a Free/Open Source project is established, it, too, has a core of code that can be used
by firms seeking to build customized solutions. It is like an API, but one available at a price of

zero (and some important strings attached). Suppose, for example, that a FOSS project has coded
the same m* features as in the pre-packaged software product. Then ”goss V)= ﬂ'/fpl (V.), but

with no additional charge to the customer as with the API. Clearly, in this case, no customer is
priced out of the market, so the efficiency gains of the API are available to all customers with
complex applications. FOSS thus further improves the provision of software.

More generally, suppose a FOSS project has coded m features. Suppose that a
prospective customer (prospective FOSS developer) needs just one additional feature. Let the

disutility for that customer to code and debug one additional feature to the FOSS product be

E - cpps > given intensity of effort, E. Then
(1) Zrpes (V) = mé:lX[p(E)‘/[- E'CFOSS]-

Note that that for some customers, ¢, < C,., . This will surely be true if m >m = m*

and the features in the pre-packaged software are a subset of the features in the FOSS code. This
group of customers will make greater effort and have a greater probability of success under FOSS
than with the API. With a sufficiently large code base, FOSS will be superior for customers with
complex requirements, m > m*,

Proposition 3. Given a Free/Open Source software project that has developed a code base
m > m* that includes the features of the pre-packaged software, complex applications with

20 — Open Source — 7/05

m > m*, will be developed with greater socially efficiency under Free/Open Source
development than by a combination of a pre-packaged software product and custom
programming, by a combination of a pre-packaged software product and a developer’s toolkit,
or by customer self-development.

3.5 Growth and viability of FOSS

This, of course, begs the question of whether and how a FOSS project can build such an
initial code base. The main focus of this paper is on the existence and robustness of FOSS once it
has begun. Still, the model suggests several points about its initial growth. First, FOSS
development does not require a large initial code base. Consider a FOSS project where, say,

m << m*. As long as some prospective customer can make use of a product with m +1 features,
then this code base allows this customer to efficiently develop by coding just one additional
feature. And since that customer then returns the code for the additional feature to the shared
resource, the code base for other prospective customers grows by one feature. Another FOSS
developer may then add another additional feature, and so on. FOSS development can thus begin
with a code base that is much smaller than m*, and yet that code base can grow to something much
larger than m*, ultimately allowing much more efficient development of complex applications.

Note, however, that this argument assumes that no pre-packaged software product is on the
market. With a pre-packaged software product on the market, some prospective FOSS developers
may choose to purchase the package rather than to participate in FOSS development. There are at
least three reasons, however, why the alternative of a pre-packaged software product might not
prevent the initiation and evolution of a robust FOSS alternative:

1. Some customers will find the monopoly price for the software package too high. As 1
show below, a monopolist will charge a lower price for a pre-packaged software product when
faced with a competing FOSS project. Nevertheless, some prospective customers will be priced
out of the market and will choose to participate in FOSS development instead.

2. FOSS may have an advantage in small markets and/or markets where the initial
development effort required to create a useful product is not large. As discussed below, pre-
packaged software may not be sustainable in such markets. Moreover, it is often the case that the
initial market for a new technology begins quite small and can be addressed with simple products,
but as the technology improves the market grows rapidly. This growth is a staple of industry life-
cycle studies and studies of “disruptive technologies” (Utterback, 1996, Christensen, 1997). In

these cases, FOSS may get started earlier in the product life-cycle and may become well-developed

21 — Open Source — 7/05

before proprietary competitors enter. This describes, for example, the development of web
browsers and web servers. In effect, the historical path of development may provide an advantage
to FOSS development.

3. Especially for small markets and small projects, the personal motivations of individual
programmers may come into play and provide additional incentive to develop a FOSS project even
though a commercial alternative is available. An example of this is Linux, which began as a
personal project of Linus Torvalds using as a code base Minix, written by Andrew Tanenbaum as a
teaching aid (Moody, 2001).

Two other factors might work against the early stages of FOSS development: if a
prospective customer expects that other prospective customers might volunteer to code an initial
project, then free-riding may give rise to some inefficiency as in Johnson (2002). Nevertheless,
free-riding does not prevent the possibility of successful FOSS projects; it just diminishes the
probability of success.

Second, software patents, especially obvious software patents, may prevent FOSS
development. As noted above, software patents that cover a generic concept may limit the range of
feasible contractual arrangements and such is the case here (FOSS is a form contracting after all).
Note, however, that such generic patents are also a problem for pre-packaged software producers
(albeit they may have more resources to litigate them), and forms of insurance are emerging for
open source. !4

In general, then, there is good reason to anticipate the emergence and growth of future
FOSS projects. Moreover, these projects can grow even in the presence of a competing pre-

packaged software product.

3.6 Coexistence

But will a successful FOSS project drive a pre-packaged software product from the
market? Not necessarily.

First, note that even when a relatively sophisticated FOSS project is developed, many
prospective customers may still prefer to purchase a competing pre-packaged software product.

Even though, say, m = m* , this does nor mean that the FOSS project has developed support for

all 2" use-products supported by the pre-packaged software firm. So these customers (quite

14 See Open Source Risk Management, http://www.osriskmanagement.com/.

22 — Open Source — 7/05

possibly the vast majority of prospective customers) are faced with a choice of purchasing the pre-
packaged product or customizing the FOSS code at a disutility of E - ¢p g -

Following the treatment for self-development above, the market for the pre-packaged
product in stage three includes those customers who can afford price w, whose needs are met by
the pre-packaged product, and who have not self-developed successfully in stage 2. These

prospective customers will exert the following effort in stage two:

(12) E(w) =argmax[p(E)V, +(1— p(E))V, —=W)—E Cps)~ V., >w
E

Then the monopolist’s optimal price is

13 w=argmaxlw- Hwl Hw == Fom)i- plEw))

w

and maximum profit is

(14) D

75, = max|p(e) Nm) W H() — e-(c, +c2"]

It is then straightforward to show that the monopolist will exert a positive effort, so,

Proposition 4. A pre-packaged software monopolist and a FOSS project can coexist, both
exerting positive effort.

Proof: The partial derivative of the expression within brackets with respect to e is positive and
infinite at e=0.15

As in the case where the alternative is self-development, two groups of customers will

choose FOSS over the pre-packaged product: those with simple needs (m < m *) but low
valuations who are unwilling to pay w, and those with complex needs, m > m *. Since the first

group is composed of low valuation customers, they will exert a relatively low level of effort E*
on FOSS development. The second group will exert greater effort. In effect, FOSS development
will be concentrated on relatively complex applications.

The monopolist will charge a lower price in this scenario than in (7) because
E (w) < E (w) since ¢, + ¢ > Cpyg - The corresponding values of e* and m* will be lower. So

there will be some reduction in the probability of success of the pre-packaged software. This,

15 This result depends on the assumption that p”(0) is infinite. If p’(0) were, instead, finite, then the same

result would still hold as long as N is sufficiently large, that is, in a large market.

23 — Open Source — 7/05

however, may be more than offset by the welfare gains of those customers who choose to
participate in FOSS development.

Note that the model implies that FOSS will displace the use of an API in conjunction with
a pre-packaged software product. This is clearly counterfactual, but it is a consequence of the
assumption that customers are capable software developers. In a more general model, such

customers (or programmers under contract with them) might purchase the APL.

4. Conclusion

This analysis may help dispel two myths about Free/Open Source software. First, it is not

9 ¢

a “communistic,” “property destroying” alternative to proprietary software. It is better viewed as a
complement to proprietary provision, recognizing that proprietary provision fails to effectively
meet the needs of many customers in markets where customers have highly disparate needs and
products are complex. Free/Open Source software and proprietary provision of pre-packaged
software can both exist in a market, recognizing that they mainly serve different groups of
customers. Free/Open Source will be most used by firms who have their own development
capability and who have complex, specialized needs; pre-packaged software will be used by firms
with simpler needs and by firms who lack development capabilities. The addition of Free/Open
Source software to a market with a pre-existing packaged software product may reduce the
monopolist’s profits and may limit the monopolist’s market for developer’s toolkits, but this
should not drive the monopolist out of the market.

Second, it is a mistake to assume that FOSS is somehow less robust because it is based on
voluntary contributions rather than driven by the profit incentive. In fact, the firms that participate
in FOSS are driven by the profit incentive—FOSS is just the most socially efficient means for
many of them to obtain the software they need in their profit-making activities. Managers need to
view FOSS as an alternative to simple “make-or-buy.” This alternative will make the most sense
for firms with specialized and complex needs. And it may be especially important in emerging

technologies where markets are initially small.

References

Aghion, P. and J. Tirole. 1994. The Management of Innovation, Quarterly Journal of Economics,
109 pp. 1185-1209.

24 — Open Source — 7/05

Bitzer, J. 2004. Commercial versus open source software: the role of product heterogeneity in
competition, Economic Systems 28 pp. 369-381.

Bitzer, J. and P. Schroder. 2005. Bug-fixing and code-writing: The private provision of open
source software, Information Economics and Policy 17 pp. 389-406.

Bliss, C., and B. Nalebuff. 1984. Dragon-slaying and ballroom dancing: the private supply of a
public good, Journal of Public Economics 25, pp. 1-12.

Bonaccorsi, A. and C. Rossi. 2004. Altruistic individuals, selfish firms? The structure of
motivation in Open Source software, First Monday, 9, no. 1
[http://firstmonday.org/issues/issue9_1/bonaccorsi/index.html]

Casadesus-Masanell, R., Ghemawat, P., 2003. Dynamic mixed duopoly: a model motivated by
Linux vs. Windows. Harvard Business School, Working Paper No. 04-012.

Christensen, C. M. 1997. The Innovator's Dilemma: When New Technologies Cause Great Firms
to Fail, Harvard Business School Press, Cambridge.

Cusumano, M. A. 1991. Japan’s Software Factories: A Challenge to U.S. Management. Oxford
University Press, New York.

Cusumano, M. A. and R. W. Selby. 1995. Microsoft Secrets: How the world’s most powerful
software company creates technology, shapes markets and manages people. Simon and
Schuster, New York.

Franke, N. and E. von Hippel, 2003. Satisfying Heterogeneous User Needs via Innovation
Toolkits: The Case of Apache Security Software, Research Policy, 32, no. 7, pp. 1199-
1215.

Gaudeul, A. 2005. Competition between open-source and proprietary organizations Working
Paper.

Ghosh, R., R. Glott, B. Krieger, and G. Robles, 2002. Survey of Developers, Free/Libre and Open
Source Software: Survey and Study, FLOSS, Final Report, International Institute of
Infonomics, [http://floss.infonomics.nl/report/FLOSS_Final4.pdf]

Grimm, Bruce and Robert Parker. 2000. Recognition of Business and Government Expenditures
for Software as Investment: Methodology and Quantitative Impacts, 1959-98, Bureau of
Economic Analysis, mimeo.

Harhoff, D., J. Henkel and E. von Hippel. 2003. Profiting from voluntary information spillovers:
How users benefit by freely revealing their innovations,Research Policy, 32, no. 10, pp.
1753-69.

Hars, A. and S. Ou, 2002. Working for Free? Motivations of participating in Open Source projects,
International Journal of Electronic Commerce, 6, pp. 25-39.

Hart, O. and J. Moore. 1999. Foundations of Incomplete Contracts, Review of Economic Studies,
66, pp. 115-138.

25 — Open Source — 7/05

Henkel, J. and M. Tins. 2004. Munich/MIT Survey: Development of Embedded Linux, working
paper [http://opensource.mit.edu/papers/henkeltins.pdf].

Hertel, G., S. Niedner, and S. Hermann, 2003. Motivation of software developers in the Open
Source projects: An Internet-based survey of contributors to the Linux kernel, Research
Policy, 32, no. 7, pp. 1159-1177.

The Internet Operating System Counter Page. http://www.leb.net/hzo/ioscount/index.html.
Accessed 2/2001.

Johnson, J. P.. 2002. Open Source Software: Private Provision of a Public Good,Journal of
Economics and Management Strategy, 11, no. 4, pp. 637-62.

Krishnamurthy, S. 2002. Cave or Community?: An Empirical Examination of 100 Mature Open
Source Projects, First Monday, 7, no. 6 (June 2002),
[http://firstmonday.org/issues/issue7_6/krishnamurthy/index.html]

Kuan, J. 2001, Open Source Software as Consumer Integration into Production, working paper
[http://papers.ssrn.com/sol3/papers.cfm?abstract_id=259648].

Lakhani, K. and R. G. Wolf. 2005. Why Hackers Do What They Do: Understanding Motivation
and Effort in Free/Open Source Software Projects, In: Feller, J., B. Fitzgerald, S. Hissam,
K. Lakhani (eds.), Perspectives on Free and Open Source Software, MIT Press,
Cambridge.

Lerner, J. and J. Tirole. 2002. Some Simple Economics of Open Source. Journal of Industrial
Economics, 50, no. 2, pp. 197-234

Miller, B. P. and D. Koski, C. Pheow Lee, V. Maganty, R. Murthy, A. Natarajan, J. Steidl. 1995.
Fuzz Revisited: A Re-examination of the Reliability of UNIX Ultilities and Services.
University of Wisconsin working paper. ftp://grilled.cs.wisc.edu/technical papers/fuzz-

revisited.pdf.

Mockus, A., R. T. Fielding and J. Herbsleb. (2000) A Case Study of Open Source Software
Development: The Apache Server, forthcoming in Proceedings of ICSE2000, also at
http://opensource.mit.edu/papers/mockusapache.pdf.

Moody, G.. 2001. Rebel Code: The Inside Story of Linux and the Open Source Revolution,.
Perseus Publishing, Cambridge, Ma.

Mustonen, M., 2003. Copyleft—the economics of Linux and other open source software,
Information Economics and Policy 15, pp. 99-121.

The Netcraft Web Server Survey. http://www.netcraft.com/survey/. Accessed 5/2002.

Palfrey, T.R. and H. Rosenthal, 1984, Participation and the Provision of Discrete Public Goods: A
Strategic Analysis, Journal of Public Economics, 24, pp. 171-193.

Raymond, E. S. The Cathedral and the Bazaar. http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/.

26 — Open Source — 7/05

Rossi, M. 2004. Decoding the ‘Free/Open Source (F/OSS) Software Puzzle’a survey of theoretical
and empirical contributions, [http://opensource.mit.edu/papers/rossi.pdf]

Security Space, Apache Module Report,
https://securel.securityspace.com/s_survey/data/man.200204/apachemods.html, accessed
5/25/2002.

Segal, I. 1999. Complexity and Renegotiation: A Foundation for Incomplete Contracts, Review of
Economic Studies, 66, pp. 57-82.

Tirole, J. 1999. Incomplete Contracts: Where do we stand? Econometrica, 67, no. 4, pp. 741-81.

Utterback, J. M. 1996. Mastering the Dynamics of Innovation, Harvard Business School Press.

27 — Open Source — 7/05

Figure 1. Packaged Software Share of All Software Investment
Source: Grimm and Parker (2000)

100%

80%

60%

40%

20%

0%

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90 92 94 96 98

28 — Open Source — 7/05

Figure 2. Development contract games

Self-development

1. Contract:
Customer owns

Contract
programming

1. Contract:
Developer owns

2. Allocate effort
{0, E}

2. Allocate effort
{e, E}

Success?

Success?

3. Payoff:

{0.Vv})

3. Bargaining
payoft:
{ V2, Vi2}

29 — Open Source — 7/05

Figure 3. Pre-packaged software game

1. Developer chooses e
and m

Total effort: e (Co +c2")

A 4

Success?
yes

A 4

Use-product included &
V.>w?
yes

A 4

2. Customer chooses self-
development effort E:

ml.?x[p(E)w -E- (c0 + c)]

A 4

Success?
no

A 4

3. Developer sells pre-packaged
software at price w

Developer Payoff:
p()N(m)wG(w)—e (co +c2")

