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1 Introduction 

While innovation is frequently touted to be one of the most important drivers of economic 
growth, it is also one that is not observed in particular detail in standard statistics. The 
knowledge economy still largely escapes the grasp of statisticians, and researchers in this 
field have therefore experienced serious data constraints for many decades. Recently, the 
availability of large datasets containing information on R&D expenditures, patents and 
trademarks has relaxed these constraints considerably and has spurred the growth of a new 
wave of research.  

However, the availability of such large-scale datasets has led to a new embarrassment of 
riches. Many researchers have put effort into the matching and consolidation of names of 
applicants of patents or trademarks, or have combined such data with firm-level financial 
data. Predictably, there is currently much duplication of such efforts. While the matching task 
has proven quite feasible for focused industry and technology studies, there is still no reliable 
and proven standard approach for larger datasets. Moreover, replication of studies is made 
very difficult by the lack of acknowledged standard approaches. This paper seeks to fill this 
gap, building on the experiences and results that the authors have achieved in separate and 
joint efforts. We present a methodological discussion and make the results of our data 
consolidation efforts available to the innovation research community via a website.1 

Innovation studies have made good use of a variety of data types in order to evade the 
aforementioned data constraint. A first avenue is the collection from secondary sources of 
information on different qualitative dimensions of innovation. Examples include prizes as a 
measure of successful innovation, newswire (e.g., ad-hoc) announcements as a paper trail of 
collaboration among firms or of acquisitions, licensing and R&D agreements (Moser, 2005; 
Giarratana and Torrisi, 2006; Greenhalgh and Rogers, 2007; Fosfuri and Giarratana, 2007; 
Powell et al., 2000; Arora et al., 2001). By choosing data from particular contexts, sometimes 
using quasi-experimental features, researchers have been able to sort out competing 
explanations of particular innovation phenomena and to generate results with a high degree of 
internal validity and reliability. Recent attempts to search for well-defined quasi-experiments 
in particular areas (Stern and Furman, 2009; Murray et al., 2008) also belong to this group. 

The second approach is based on the collection of information through surveys of innovating 
entities (organizations or individuals) and has produced many important datasets and results. 
With respect to U.S. data, two widely cited surveys are the Yale Survey (Levin et al. 1987) 
administrated in the early 1980s and the sequel conducted by scholars at the Carnegie Mellon 
University in the 1990s (Cohen et al. 2000). Both covered the sources and strategies of 
innovation at the firm level by eliciting information from R&D managers. These surveys 
were followed by the development of various innovation surveys in Europe, culminating in 
the Community Innovation Survey (Mairesse and Mohnen 2010). More recently, European 
scholars have conducted inventor surveys based on the individuals named in patent 
applications which provide very detailed information on the factors driving innovation at the 
level of the individual inventor and within invention processes (Gambardella et al., 2008; 
Giuri, Mariani et al., 2007). Their example has been followed by Japanese, Korean, US and 

                                                

1 See http://www.epip.eu/datacentre.php 
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Australian researchers (Nagaoka and Tsukada, 2007; Nagaoka and Walsh, 2008; Um 2005; 
Heong et al. 2007). 

Finally, the third approach is to rely on publicly available administrative and financial 
databases such as patent and accounting information, or in some cases on confidential firm 
level data that resides in National Statistical Offices, Central Banks or institutions which have 
been commissioned by government agencies to perform surveys and data collections on a 
regular basis.2 In our application, we focus on this third type of data, which are useful 
because it provides comprehensive coverage of industries, technologies and countries. In 
addition, this kind of data is usually collected on a regular basis allowing for replication and 
updating of studies. 

The distinction made here may be overly stylized. Indeed, data of different types and from 
different sources are often combined. For example, the inventor surveys undertaken in 
various countries depend critically on inventor information as contained in official patent 
data. Moser’s 2005 study combines historical patent data, entries in exhibition catalogues and 
innovation award data. Moreover, it is frequently the case that innovation-related data is 
complemented with information from accounting sources or other forms of financial data. In 
most cases, a large number of observations in each dataset need to be merged in the absence 
of a common identifying code, which means that researchers have to rely only on the entity 
names to do the match. The problems that arise in this case and possible ways to solve them 
are the subject of this paper.  

The matching and harmonization problem we address is usually present for any of the 
datasets described in the above, and it becomes more complex as the size of the dataset (the 
number of entities) increases. It is important to note that the problem may also exist even if 
just one type of data is being used. Variations in the spellings of names routinely occur within 
large-scale datasets such as patent and trademark data.3 The problem can usually be handled 
manually in smaller datasets, but requires some form of automated approach in larger 
datasets. The exact nature of the problems to be addressed is described in section 2.3. 

Turning to the types of data of particular interest to us, we note that the most often 
encountered ones are i) data on R&D expenditures as collected by statistical agencies or 
revealed in accounting data and stock market reports; ii) data from regularly performed 
innovation surveys; iii) data on intellectual property rights, such as from patent and trademark 
offices; iv) data on firm inputs and value added, such as is collected by various national 
statistical agencies; and v) corresponding data on the financial status of firms, such as P&L 
data, balance sheet data and so forth. We discuss these here before turning to IP and financial 
data as our particular focus in this article. This list is not complete, but presumably covers the 
most frequently used data for which a name matching problem occurs. 

                                                

2 What distinguishes the second and third approach is that in the second case, data collection often represents a 
singular research effort yielding a cross-sectional database. The results are of considerable value, but typically 
not suited to provide representative data on innovation over time. 

3 For example, uncleaned USPTO patent data contain several hundred versions of the name of IBM Corporation. 
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R&D data. Data on R&D expenditures have been collected for many decades by statistical 
agencies and other entities commissioned by government agencies.4 The foundation for these 
surveys is the Frascati Manual (OECD 2002) which contains definitions of R&D and related 
terms and detailed hints for the surveys. The results of R&D surveys are summarized on an 
annual basis in national and in OECD reports, but the firm-level data are usually not available 
publicly for use in micro-econometric studies. Under US and UK accounting rules, firms 
listed in the stock market have to report their R&D expenditures if they are “material” and 
under revisions to the International Accounting Standards Board, the practice of reporting 
such data is spreading. However, especially in the case of European firms, data on R&D 
expenditures are often missing because reporting these expenditures is not currently required 
by accounting and fiscal regulations. The definition of R&D used for accounting purposes 
can also differ from that in the Frascati Manual; for the US example, see Hall and Long 
(1999).  

Innovation survey data. In many European and non-European countries these are now being 
undertaken on a regular (usually annual) basis. Innovation surveys seek to elicit information 
not only on R&D, but also on the broader innovation process as described in the 
OECD/Eurostat - Oslo Manual (2005).5 Although R&D is a good indicator of the 
commitment of a firm to inventive activities because it is chosen by the firm, it does not tell 
us much about their ‘success', technical and economic, which is rather reflected in the notion 
of innovation (which is an invention reaching the stage of implementation, either as a new 
process, a new product or a new marketing approach). Moreover, not all inputs into 
innovation processes are covered by the classical Frascati Manual definition.  

In the European context, European National Statistical Offices have conducted a series of 
Community Innovation Surveys (CIS), collecting detailed data on innovation and other firm 
characteristics.6 The integration of CIS and other survey data with information from other 
databases, such as patents and accounting data is made difficult by the limitations to the use 
of CIS data imposed by confidentiality laws in all countries. Innovation survey data continue 
to generate important findings, but the difficulty of matching CIS databases to other 
databases have limited their use for the purpose of research in economics, management and 
public policy (Mairesse and Mohnen, 2010). 7  

                                                

4 In Germany, the R&D surveys are performed by Wissenschaftsstatistik GmbH, a branch of Stifterverband, an 
association of German industry which supports research and science. In this case, the performer of the survey is 
not an official statistical agency. In most other countries such as Austria, the UK, France, Italy and the 
Netherlands, the statistical agencies carry out the surveys. In the US, the survey is carried out by the Bureau of 
the Census under a contract from the National Science Foundation. 

5 Available at the following link http://www.oecd.org/dataoecd/35/61/2367580.pdf 

6 See Arundel (2001) for details. A large number of countries outside of Europe and North American have 
followed this lead, with innovation surveys now having been conducted in Asia, Latin America, and other 
locations. The United States does not perform a government innovation survey, although similar private NSF-
funded surveys have been done in the past (Levin et al. 1987; Cohen et al. 2000) and a major new initiative is 
now underway, directed by Wesley Cohen.  

7 There are a few exceptions to this rule. The German government has commissioned innovation surveys on a 
regular (annual) basis (of which the CIS survey is a part) and the resulting cross-sectional and panel data have 
been used in a large number of studies. This dataset has also been combined with patent data and other external 
information. See the survey by Janz et al. (2001) for a detailed description. 
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Patent data. Due to the wider availability of computer-ready datasets, an increasing number 
of studies use patent counts and patent-related indicators to measure the quantity and the 
‘quality' of inventive output. Patents as a measure of inventive success have their own 
drawbacks, but they constitute a detailed measure of innovation (Griliches, 1981 and 1990; 
Pavitt, 1988). However, crude patent counts are an extremely noisy indicator of inventive 
output because they do not account for differences in the value of patented inventions. For 
this reason, many innovation scholars have introduced various patent-related indicators as a 
measure of the importance or “quality” of the inventive output (Harhoff et al. 2003, Hall et al. 
2005). 

Trademark data. Comprehensive studies on the economic role of trademarks are still rare, 
but recent studies confirm that trademarks can be economically important, explaining a 
significant share of the market capitalization of firms (Greenhalgh and Rogers, 2006; Sandner 
2009). Trademarks have also been used as proxy for firm’s diversification activities 
(Mendoça et al, 2004), processes of market entry and survival (Fosfuri and Giarratana, 2007), 
appropriability strategies (Graham, and Somaya, 2004) and firm’s reputation and 
advertisement efforts (von Graevenitz, 2004). 

Accounting and other economic data. In some cases, the isolated use of any of the data may 
be sufficient to undertake a study on innovation. But frequently, R&D, innovation survey, or 
IP data need to be combined with accounting or financial data for the firm in question, 
especially if we wish to measure outcomes such as productivity or profitability. Databases 
that contain such data (Amadeus, Compustat, Reuters and others) usually have their own 
system of entity identification that does not match up with the sources of IP and innovation 
data.  

Therefore, studies that seek to employ data from different sources (for example, financial 
data jointly with patent and trademark data) have to merge multiple types of firm 
identification. Since inaccuracies in data merging and integration can lead to measurement 
errors, biased results or lack of sufficient statistical power, correct matching is an important 
but neglected issue. This is a particularly important issue in studies of patenting at the firm 
level because patent data never comes with firm-level identifiers that match to other sources 
of data, and researchers must rely only on the names of the firms to combine datasets. 

Earlier solutions to this problem have relied on manual matching of firm names across 
datasets (e.g., the small samples of US patenting firms used by Griliches, 1981) and partially 
computer-based ad hoc methods combined with manual matching (e. g., Bound et al., 1984 
and Hall et al., 2005). But methods involving even a small amount of manual matching have 
limits when confronted with the large datasets that are common today.  

Researchers are therefore forced to apply one or several automated methods. The first group 
of approaches are dictionary-based methods, essentially based on large collections of names 
that serve as examples for a specific entity class, such as the DERWENT Patentee Index, and 
the USPTO and EPO standard patent-holder codes. More recently, automatic methods have 
been suggested for generating a dictionary (Magerman, Van Looy and Song, 2006). The 
second group are rule-based approaches that build up a set of rules for the comparison of 
similar names. A pioneering exercise was performed by Thoma and Torrisi (2007) using 
approximate matching based on string similarity functions. Their analysis was based on two 
data sources: the PATSTAT patent database (USPTO and EPO patents) and the Amadeus 
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accounting and financial dataset which contains 2,197 parent firms and their 151,979 
subsidiaries. Doing a good match requires using a combination of the two approaches, as 
neither one is sufficient on its own.  

The contribution of this paper is the development of a more comprehensive and automated 
methodology for company name standardization and the matching of two data sources using 
the resulting standardized names: IP-related databases and company business directories. Our 
methodology utilizes recent advances in automatic Named Entity Recognition (NER) 
systems. NER systems have been applied successfully in bioinformatics, while their 
deployment in social sciences is still at an early phase. Thus this study is among the first 
attempts to use these methods in empirical studies in economics and management. We do not 
rely on a single NER approach, but experiment with several techniques in parallel. We find 
that a combination of dictionary-based and rule-based approaches produces the most 
favorable results in our application. 

The paper is organized as follows. In section 2, we start by describing the data sources 
currently available for large-scale studies on patenting and other IP information. Using 
examples from these data, we then describe various types of problems researchers are facing. 
In section 3, we then describe two fundamental approaches to solving the problem: the 
dictionary based approach, which relies on the collection of large datasets of names and their 
variants, and the rule-based method, which builds on the articulation of rules to establish a 
similarity link across different entity names. Additionally, we discuss how the value of 
existing dictionaries could be enhanced by using other methods to query their entries. We 
propose a novel method relying on priority links among the patents that enables the 
combination of distinct dictionaries of entity names originating from patent data of different 
offices.  

In section 4, we describe the software prototypes for the different approaches analyzed in the 
section 3. In this section, we combine the different approaches in order to achieve reliable 
results for the problem at hand. Finally, in section 5, we conclude by documenting the 
harmonization and matching that results from the methodology suggested in this paper and 
assessing the type I and type II errors thus achieved. Section 6 concludes. 

2 Frequently Used Data Sources and Matching Problems 

In this section we briefly review the sources of patents and other IP data frequently used in 
economic studies. In particular, we will consider their content, time coverage, mode of 
access, complementary search and management tools and potential integration with other 
sources. We also provide a description of typical matching problems arising from the use of 
these data. 

2.1 Online databases 

US granted patents 

Freely available from www.uspto.gov, this database includes information on all US patents 
(including utility, design, reissue, plant patents and others) from the first patent issued in 
1790 to the most recent issue week. 

Full searchable text is offered for patents issued from January 1976 to the present, including 
all bibliographic data, such as the inventor's name, the patent's title, and the patenter's name 
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(called the assignee at the USPTO), the abstract, the full description of the invention, and the 
claims. Patents issued prior to December 1975 are only searchable through the patent 
number, issue date, and current US patent classification. 

US published applications 

As in the case of granted patents, the application database is freely searchable at the USPTO 
and consists of the full text of US applications that have been published since its inception in 
March 2001. After that date patent applications could be kept secret if protection was 
requested in the US only; otherwise the application is published within 18 months from 
filing.  

The full text of a published application includes all bibliographic data, such as the inventor's 
name, the published application's title, and the applicant, as well as the abstract, the full 
description of the invention, and the claims. All of the textual words in the publication are 
searchable. 

IIP Japan database 

This database contains information on all 9 million published Japanese patent applications 
between 1964 and 2004, along with 2.6 million patent registrations (grants). The information 
provided consists of the application and registration numbers, dates of application, exam 
request, grant, and expiration, the number of claims, IPC codes, applicant and rights holder 
information including geographic location, and citation links. The dataset is provided freely 
online and documented in Goto and Motohashi (2007).8 

USPTO Trademarks 

The USPTO website at http://www.uspto.gov/main/trademarks.htm provides complete 
electronic information about trademarks since the birth of the USPTO. The database contains 
more than 4 million pending, registered and dead trademarks and it provides complete free 
searchable access to the text and image database of trademarks.  

ESPACE on-line 

The ESPACE database contains freely searchable information on published patent 
applications from over 80 different countries and regions. It is based on the PCT minimum 
documentation, which is defined by WIPO as the minimum requirement for patent collections 
used to search for prior-art documents for the purpose of assessing novelty and inventiveness. 
As of March 2007, esp@cenet® held data on 60 million patents. A total of 30.5 million of 
these patents have a title, 19.5 million have an abstract in English, and 29.5 million have an 
ECLA class.9  

                                                

8 See http://www.iip.or.jp 

9 ECLA is a European Patent Classification that is about twice as detailed as the IPC (International Patent Class) 
classification. 
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Table 1:  

ESP@cenet coverage: Starting year of availability for the main patent offices 

 

Patent Office Facsimiles Full Text ECLA 

DE 1877 1970 1877 
EP 1978 1978 1978 
FR 1900 1970 1902 
GB 1859 1893 1859 
US 1836 1970 1836 
WO 1978 1978 1978 

Source: Own analysis based on http://ep.espacenet.com/?locale=en_EP 

CTM – on line 

CTM–ONLINE provides free access to information on EU Community trade mark 
applications and Community Trademarks, updated on a daily basis regarding: the trademark 
number, name, type, owner, Nice10 classification codes, status, filing date, registration date, 
date of international registration, publication date, expiry date etc. 

2.2 Off-line databases 

While the on-line databases provide real time and constantly updated information, researchers 
are often more interested in off-line databases in spite of higher costs and difficulties of 
updating. Off-line databases allow easier generation and manipulation of innovation 
indicators for statistical analysis. Moreover, ex-post scalability and integrability with other 
sources of information is significantly higher. The most important current sources of such 
data that are easy and low cost are the NBER patent citation database and the EPO-OECD 
PATSTAT database. However, before describing those two sources we will mention at least 
two other earlier efforts to generate such data, which contain historical data and are still 
available. 

The pioneering work using patent data in economic studies can be found in Jacob 
Schmookler’s (1966) major book entitled Invention and Economic Growth. Schmookler 
classified patents manually by the industry of their potential use, finding that the top three 
user industries of patents during the first half of the 20th century were the railroad, 
petrochemical and building sectors. 

The seminal work of Schmookler was followed by that of Griliches and co-workers at the 
NBER (Bound et al., 1984, which constitutes the first major effort to combine patent counts 
with economic and financial data, such as sales, capital stocks, research and development, 
income, at the firm level. The accounting information is drawn from Standard and Poor’s 
Compustat files, which contain data for all firms traded in the major US stock markets. The 
linking was done mostly manually and it involved about 2,700 US corporations and their 
subsidiaries as reported in the year 1976. The authors used this dataset to estimate patent 
production functions and valuation equations. 

                                                

10 See http://www.wipo.int/classifications/nice/en/classifications.html (last download Oct. 15th, 2009) for details 
on the classification. 
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The NBER patent database 

The NBER patent dataset on USPTO data represents a path-breaking effort of providing 
additional bibliographic information that could be used to account for differences in the 
‘value’ of patents (Hall, Jaffe and Trajtenberg 2001 and 2005). Hall and colleagues have 
made these data freely available via the NBER website allowing a surge of new wave of 
research in innovation studies. For a partial set of contributions, see Jaffe and Trajtenberg 
(2002) and Cockburn et al. (2004).  

The database comprises detailed information on almost 3 million US patents granted between 
January 1963 and December 1999. Available data fields in the NBER database consist of four 
main building blocks. First, it includes application and publication numbers and dates and 
technological classifications. Second, detailed and harmonized information is supplied on 
inventor names, address, city, zip code, and state and country code. The database is 
accompanied by a file containing the link between the names of USPTO patent assignees and 
the names of US companies listed in the Compustat dataset. This match is a more complete 
and updated version of the one described in Bound et al. (1984).11 Recently these data have 
been updated to 2006 by Cockburn and co-workers at the NBER (Cockburn et al., 2009).12  

The fourth building block consists of the citation links, in particular all US patent citations 
made to these patents between 1975 and 1999, constituting over 16 million citation links. 
Although useful for the analysis of US-based questions, the drawback to using the NBER 
citation data is that it does not currently include information on citations to and from other 
patent databases, so citation counts are likely to be downward biased, especially for foreign-
owned patents. 

PATSTAT 

Creation of a worldwide statistical patent database was initiated by the OECD task force on 
patent statistics; in response, PATSTAT was developed by the EPO in 2005 on the basis of 
the DOCDB database. It includes bibliographic details on patents filed to 80 patent offices 
worldwide, covering more than 60 million documents. Hence filings in all major countries 
and the PCT filings at the World International Patent Office are covered.13 Available fields of 
PATSTAT are listed below and a fuller discussion of these indicators can be found in 
(OECD, 2009):14 

• Application and publication details such as authority, number, kind and dates; 

• Technical information and descriptions such as title, abstract, international and 
national classification; 

                                                

11 The match of patents to Compustat for the 1999 database is based on the 1989 universe of companies. For 
more details see Hall et al. (2001) and http://www.nber.org/patents/ 

12 Beta versions of the new datasets are available at https://sites.google.com/site/patentdataproject/Home . 

13 Having complete coverage of PCT-WIPO filings is important because their counts allow for interesting 
international comparisons. 

14 A comprehensive data catalog is provided along with the tables, describing the fields’ codes. An additional 
document lists the currently available fields and the time period covered for each country. 
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• Applicant and inventor name, address, and country code; 

• Identification of claimed priority, designating international application, parent 
application and technically related application; 

• Identification of cited publication including patent and non-patent prior art, category 
and origin of the citation. 

PATSTAT is released by the EPO twice a year, early spring and early autumn. Each version 
presents a snapshot of the source databases at a single point in time.15 However, the content 
and design of PATSTAT is not intended to be static: a “change management procedure” has 
been put in place by the EPO to allow task force members to request changes in the data 
catalog (i.e. including additional information, variables, etc.) within a reasonable time before 
each release. Currently around 100 institutions have subscribed to PATSTAT and this 
database is expected to be widely used for innovation studies. 

2.3 Typical Matching Problems 

The matching and consolidation problems faced by researchers typically fall into three broad 
classes: 

1) variations in spelling, some of which are simply typographical errors, within a given 

list or database; see the examples in Box 1. 

2) variations in the way names appear in two or several different lists, in many cases 
caused by different naming conventions; see the examples in Box 2. 

3) the problem of matching firm subsidiaries in one list to ultimate owners in another 
(Box 3). This problem is especially important when matching firm financial data 
(reported at a consolidated level) to patent data (which is often at the subsidiary 
level). 

 
Box 1. Different spellings and misspellings 

 

SYNRES INTERNATIONAL B.V. 
SYRNES INTERNATIONAL B.V. 
 
BSH BOSCH UND SIEMENS AKTIENGESELLSCHAFT 
BSH BOSCH UND SIEMENS AKTINGESELLSCHAFT  
BSH BOSCH UND SIEMENS HANSGERAETE GMBH 
BSH BOSCH UND SIEMENS HAUS-GERAETE GMBH 
BSH BOSCH UND SIEMENS HAUSERATE GMBH 
 
MINNESOTA MINING AND MANUFACTURING COPANY  
MINNESOTA MINING AND MANUFACTURING COPMANY  

                                                

15 Much of the data is extracted from the EPO’s master bibliographic database – DocDB, also known as the EPO 
Patent Information Resource. However, depending on the patent office, the coverage of data may be partial or 
delayed over time. 
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MINNESOTA MINING AND MANUFACTURING CORP 
 
INTERNATIONAL BUSINESS MACHINES, CORPORATION  
INTERNATIONAL BUSINESS MACHINES CORPORATION 
INTERANTIONAL BUSINESS MACHINES CORPORATION 
INTERANATIONAL BUSINESS MACHINES CORPORATION  
INTERANTIONAL BUSINESS MACHINES CORPORATION 
INTERNAIONAL BUSINESS MACHINES CORPORATION 
INTERNAITONAL BUSINESS MACHINES CORPORATION 
…..and so forth 
 
 
RÜTGERSWERKE AKTIENGESELLSCHAFT 
RUTGERSWERKE AKTIENGESELLSCHAFT 
RUETGERSWERKE AKTIENGESELLSCHAFT 
R_TGERSWERKE AKTIENGESELLSCHAFT 
 
REGIE NATIONALE DES USINES RENAULT Société Anonyme 
REGIE NATIONALE DES USINES RENAULT (Societe Anonyme) 
REGIE NATIONALE DES USINES RENAULT Societé Anonyme 
REGIE NATIONALE DES USINES RENAULT (SociTtT Anonyme dite) 
 

Box 2. Variations in naming conventions 

ABITIBI PRICE CORPORATION 
ABITIBI PRICE INC 
 
SMITH (JOHN) LTD 
JOHN SMITH LTD 
 
INTERNATIONAL BUSINESS MACHINES – IBM 
IBM CORP. (INTERNATIONAL BUSINESS MACHINES) 
IBM CORPORATION (INTERNATIONAL BUSINESS MACHINES) 
 
MINNESOTA MINING & MFG CO 
3M CORP 
MINNESOTA & MINING MANUFACTURING 
 
FLUID COMPONENTS INTL. 
FLUID COMPONENTS INTERNATIONAL 
 
SENETAS CORP. LTD. (USA) 
SENETAS CORP.  
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Box 3. Assignment to aggregate entities (ownership issues) 

Subsidiary      Ultimate Owner 

ADHESIVE TECHNOLOGIES INC  MINNESOTA MINING & MFG CO 
AVI INC      MINNESOTA MINING & MFG CO 
D L AULD CPY     MINNESOTA MINING & MFG CO 
DORRAN PHOTONICS INCORPORATED MINNESOTA MINING & MFG CO 
EOTEC CORPORATION    MINNESOTA MINING & MFG CO 
NATIONAL ADVERTISING CPY   MINNESOTA MINING & MFG CO 
RIKER LABORATORIES INC   MINNESOTA MINING & MFG CO 
TRIM LINE INC     MINNESOTA MINING & MFG CO 
 

3 Methods for name matching 

In this section we describe recent developments in methodologies for integrating different IP 
databases and company directories, methods that have been inspired by some interesting 
insights from bioinformatics. 

Over the past years, biological science has become increasingly concerned with the analysis 
of large amounts of information. Consequently, the way that information is stored, managed, 
visualized, and searched has increased in importance. Named entity recognition (NER) for 
biomedical applications, i.e. the task of identifying gene, protein, diseases, and other names 
in natural text, has become a crucial means to extract highly valuable and sometimes hidden 
is hard-to-find information. The NER approach has the potential for interesting applications 
to economics and management science, especially in the area of the information integration 
of company-level data.  

In the following sections we will discuss the two different approaches to dataset merging: the 
dictionary-based approach, which relies on the collection of large datasets of names and name 
variants, and the rule-based approach which builds a set of rules for similarity links across 
different entity names. The latter uses some of the methods gleaned from bioinformatics.  

3.1 The dictionary-based approach 

Dictionaries essentially are large collections of names, serving as examples for a specific 
entity class. Matching dictionary entries exactly against text is a simple and very precise NER 
method, but typically yields a low level of match when applied to firm names. To 
compensate, one can either use approximate matching techniques, or try to ‘fuzzify' the 
dictionary by automatically generating typical spelling variants for every entry. The extended 
dictionary is then used for exact matches against the text. 

Previous attempts have addressed this issue by implementing ad-hoc matching procedures to 
reduce the cost of data standardization and integration. For example, Thomson Scientific's 
Derwent World Patent Index (2002) is constructed by assigning a code to about 21,000 
patenters. This index accounts for legal links between parent companies and subsidiaries thus 
achieving a legal entity standardization. This task requires substantial manual, labor-intensive 
work. Moreover, the matching is only available to subscribers of the Derwent service. 
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Drawing on the Derwent methodology, Rachel Griffith and colleagues at the Institute of 
Fiscal Studies (IFS) have standardized the names of a sample of UK patenters of Triadic 
patents and matched them with the standardized names of companies contained in Bureau 
van Dijk’s Amadeus database (Griffith et al. 2006). Only identical standardized names found 
in the two datasets are matched by the IFS using this procedure. 

Another example of a dictionary of patenter names is the USPTO CONAME file compiled by 
the USPTO. This uses a semi-automatic standardization procedure which focuses on the first-
named patenter reported in the patent document. For patents granted after July 1992 the 
patenter name is standardized and matched automatically with other standardized names in 
the same dataset. New patenters that are not matched automatically with standardized names 
in the dataset are matched manually. For instance, the entry of a new patenter whose 
standardized name does not match any previously standardized names can be matched by 
investigating the names and locations of the inventors. The CONAME file accounts for 
changes or variations in patenter names but does not account for legal links between patenter 
names. Moreover, similar names with a different legal form or the same legal entity from 
different countries are not matched.  

The EPO has developed its own dictionary by assigning a standard code to each patenter 
filing a patent to the office. This index is created by taking into account not only the patenter 
name and country but also her postal address. According to some interviews we did with EPO 
representatives this dictionary tries to maximize precision vis-à-vis recall rate for each entry: 
for example two patenters with the same name but having different addresses will constitute 
separate entries in the EPO dictionary and they are linked to two different standard codes that 
identify them. 

More recently, a group of researchers from the Katholike Universiteit Leuven (KUL) have 
developed an automatic methodology based on the detailed standardization of patenter names 
and perfect matching of names. This methodology, like the CONAME file and EPO standard 
codes, does not try to establish legal links among patenters. The main advantage of this 
procedure is high precision, i.e., a limited number of false matches. The KUL methodology 
has been used to standardize and match patenter names from EPO patent applications 
published between 1978 and 2004 and USPTO granted patents published between 1992 and 
2003 (Magerman, Van Looy and Song, 2006). 

According to the KUL methodology the creation of a dictionary for company names can be 
articulated in preprocessing and names standardization. Names standardization requires a 
series of tasks like punctuation standardization (e.g., from FERRARI ,& C. to FERRARI, & 
C.) and company name standardization (from FERRARI, & C. to FERRARI, AND 
COMPANY). The main standardization operations suggested by Magerman, Van Looy and 
Song (2006) can be summarized as follows: i) character cleaning; ii) punctuation cleaning; 
iii) legal form indication treatment; iv) spelling variation standardization; v) umlaut 
standardization; vi) common company name removal; vii) creation of an unified list of 
patenters. 

For US patent assignee names, a major effort to update the existing NBER patent citations 
database and match to the Compustat files is now underway (Cockburn et al. 2009). The 
matching of patent assignee names with the names of firms on the Compustat files is part of 
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this project.16 A number of enhancements to the original (1999 and 2002) databases have 
been made. First, the semi-automatic standardization procedure of this file has been extended 
to all the assignee names in the case of multi-owner patents. Second, using external sources 
originating from business directories information was collected on the timing of name and 
ownership changes of the assignee. The data now provided contains information that allows 
tracking of the assignee changes of ownership over time. Third, there is progress on 
standardizing the firm names supplied by the USPTO and correcting cases where the USPTO 
had coded the type of entity (individual, firm, government) incorrectly. The list of entity 
types has been expanded to include universities, non-profit research institutions, and medical 
institutions including hospitals. However, much of the standardization work in the current 
(2009) version of the database is still incomplete, especially that involving non-US patent 
assignees.  

3.2 The rule-based approach 

Rule-based approaches build on the definition of rules to compare the similarity of names. 
Early systems used hand-crafted rules to describe the composition of named entities and their 
context. For instance, some core words and components of words might be used to extract 
candidates for more complex names. These core terms are expanded according to a set of 
syntactic rules. Similarly, starting from more complex names one could invert the process to 
identify some discriminating core words using the same rules. 

In the following, we will focus our discussion on the potential usefulness of names similarity 
functions based on the so-called approximated string matching (ASM) algorithms (Thoma 
and Torrisi, 2007). However, it is worth remembering that the ASM method constitutes only 
a specific class of similarity rules. The applicability of other matching methods to company 
name matching should be analyzed in future research. 

The first category of ASM similarity functions is based on the edit distance. For instance, the 
Levenshtein distance between two strings is defined as the minimum number of operations 
needed to transform a string into another one. The transformation of a string can be obtained 
by character inserting, substituting, swapping or deleting (Levenshtein, 1966). An extension 
of the Levenshtein edit distance was developed by Smith and Waterman (1981). The main 
difference is that character mismatches at the beginning and the end of strings are ignored in 
the calculation of distance. For instance, the two company names ‘Dr Michal White Plc' and 
‘Michael White Plc, Dr' have a short distance using the Smith-Waterman distance. 

The similarity between two strings x and y of length nx and ny can be computed as 1-d/N, 
where 1 is the maximum similarity, d is the distance between x and y and N = max{nx , ny}. 
To calculate the distance between two strings we need to assign a cost c to each operation 
required to transform the string x into string y (or vice versa). The cost is assumed to be 1 for 
substitution and deletion of a character and 0 for perfect matching characters. For instance, 
the edit distance between IBM and INTEL is the following: 

                                                

16 The original 1999 database is at http://www.nber.org/patents with 2002 updates at 
http://www.econ.berkeley.edu/~bhhall/patents.html .  
The latest (2006) version is at https://sites.google.com/site/patentdataproject/Home . 
The match documentation is at http://www.nber.org/~jbessen/matchdoc.pdf . 
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The second category of ASM similarity functions relies on token-based distance. Measures of 
token distance, like the J similarity index, are based on the division of strings into tokens or 
sequences of characters. Token-based distance functions account for differences due to the 
position of the same tokens between otherwise identical strings (e.g., Peter Ross and Ross 
Peter). In particular, the J token distance computes the fraction of common tokens, after 
breaking up the strings into words at the blank spaces. The J token distance is simply given 
by the number of common tokens in two names and the count of total number of tokens in 
those names, that is: 

( , ) 1
X Y X Y X Y

J X Y
X Y X Y

∩ ∪ − ∩
= − =

∪ ∪
     (1) 

where X Y∩  measures the number of common tokens between strings X and Y while X Y∪  
measures the total number of distinct tokens.  

To account for common tokens, we multiply each token by a weight that is inversely 
proportional to its frequency in the dataset. Formally, each token i has a weight wi given by 
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where ni is the frequency of the token in the dataset. This weighting method is a simplified 
version of the tf–idf weight (term frequency–inverse document frequency) of Salton and 
Buckley (1988). 

To reduce the computational complexity of the J similarity index we approximate the second 
term of equation (1) as follows: 
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where the denominator is the sum of all tokens, including those tokens that are contained in 
both strings. This may result in some double counting. On the other hand, it would be 
extremely costly from a computation viewpoint to find tokens common to two strings 
(company names). To maintain the same approximate scale we have multiplied the index by a 
factor of 2. 

Thus, the weighted Jw distance is equal to the following expression: 
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Where xi∈X and yi∈Y and wi and wj are the weights inversely correlated with the frequency of 
tokens xi and yi in the dataset; the terms xk and wk are respectively the kth token and relative 
weight belonging to the intersection set X Y∩ . 
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3.3 Enhancing the value of existing dictionaries 

In the previous sections we discussed the drawbacks of the dictionary approach due to the 
low match rate when perfect matching is implemented using the dictionary entries. One 
suggestion for overcoming the drawbacks of perfect matching is the use of approximate 
matching based on the string and token similarity functions described earlier. In this section 
we discuss an additional source of standardization of patent holder names that relies on the 
priority links across patent offices. 

A priority link emerges when a patenter claims a priority date antecedent to the filing date of 
a given patent. Typically priority links refer to patent documents in other patent offices and 
the set of patents (or applications) filed in several countries which are related to each other by 
one or several common priority filings is generally known as a patent family.17 A patent 
family is sometimes also defined as all patents that protect the same basic invention. The 
rapid growth in the number of patent documents in recent years have been accompanied by 
the growth of priority links and resulting patent family size, and hence the total number of 
inventions has grown a than the total number of patent documents. 

Thus, if a patenter has filed a document in two or more offices claiming a common priority 
date, it is possible to trace a link from an entry in the patenter names dictionary in one patent 
office to the corresponding entry in another patenter names dictionary in the other patent 
offices, on the assumption that the ultimate owner of the patent will be the same at both 
offices.18 Based on this assumption, in this section we describe an additional harmonization 
method for patenter names using priority links across USPTO and EPO patent databases. The 
objective of the analysis is to assess whether the priority links between US and EPO patents 
can improve the accuracy of harmonization of two existing dictionaries of patenter names: 
the USPTO CONAME file and EPO standard names. This methodology may allow us to 
propagate the matching done with one dictionary to the other, reducing the cost of 
implementation of such matching across the two dictionaries. 

Figure 1 shows how we link these two dictionary files. In TASK 1 we start from the USPTO 
CONAME file made up of 237,666 distinct patenter names. The file has information on all 
patent-holders that have been granted at least one patent by the USPTO over the period 1963-
2007. The USPTO CONAME file can be easily interfaced with the PATSTAT database 
through the patent publication number (TASK 2). Subsequently in TASK 3, using the 
PATSTAT database we can identify the priority links from and into the EPO patent database; 
in particular we rely on the INPADOC patent family definition. In TASK 4 we use the 
priorities compiled from PATSTAT by linking each EPO application to the US priority date 

                                                

17 Patents that refer to earlier patents in the same patent office as their priority are called continuation (at the 
USPTO) or divisional patents (at the EPO and the USPTO). Because patents are sometimes divided in different 
ways at different offices and members of a family at one office may claim different priorities elsewhere, there is 
more than one definition of a patent family. See Harhoff (2008) for a fuller discussion of this issue. We have 
used the INPADOC definition, which has been included in PATSTAT for the first time in the release of October 
2008. 

18 It is important to note that this assumption will not always hold. A patent-holder with headquarter in one 
region may decide to sell patents held in another region. We have no firm data on the extent to which this is the 
case. However, our manual inspections of the data have shown that in the vast majority of cases, the patents are 
under the ownership of the same entity or at least the same multinational firm (with subsidiaries in the 
respective regions). 
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patent via the publication number. Finally, we deal with the identification of the proper link 
to the EPO patent-holder names in TASK 5, which takes account of the number of priority 
links and number of patenters per EPO patent. We used a string similarity algorithm and also 
manual checking to ensure the proper association across the USPTO assignee codes and EPO 
applicant codes. 

Figure 1. Harmonization tasks based on priority links: data and sources 

 

The final list of EPO applicant codes with a US standardized name includes around 158 
thousands patenter names corresponding to about 70 thousands names on the USPTO 
CONAME file. This USPTO/EPO dictionary contains about 77.1% of the EPO patent 
applications filed by business organizations and 77.7% of the US granted patents filed by 
business organizations. The overall gain in the harmonization of the EPO applicant code is 
about 55.8%. Thus this approach significantly increased the quality of the EPO standard 
name codes file by using the USPTO CONAME file. 

4 Implementation 

4.1 Software prototype 

In this section we summarize the structure of the software prototype for the creation of the 
dataset. 

The first software module regards the cleaning phase, i.e., the development of a dictionary. 
We built on the previous contributions by Magerman et al. (2006) and Cockburn et al. (2009), 
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adding some additional cleaning operations. The final list of operations is summarized by the 
following sequence:19 

1. Transformation into upper case to simplify matching. Addition of a blank space at the 
beginning and end of the string to facilitate word-based tests. 

2. SGML and HTML codes substituted by the ASCII/ANSI equivalent, such as for 
example “&OACUTE;” replaced by “O” etc. 

3. Proprietary character codes replaced by the ASCII/ANSI equivalent. 

4. Each of the accented characters is replaced by its unaccented version. 

5. Removal of frequent comma, double quotation mark irregularities and other period 
irregularities and non-alphanumeric characters. 

6. The conjunction ”and” and its translations into other languages are standardized as 
“&”. 

7. Umlaut harmonization by reducing variations such as “ue”, “ae”, and “oe” to 
respectively “u”, “a”, and “o”. 

8. Removal of common company words like INC and AB in descending order of their 
length. 

9. Replacement of spelling variations with their harmonized equivalent for some 
frequent words (such as INTL for INTERNATIONAL and its variants).  

10. Removal of the round parentheses and cleaning their content; typically this content 
consists of geographical information or former company names. 

11. Removal of multiple blank spaces, replacing with a single space. 

12. Generation of a unique list of patenters by removing duplicates after cleaning. 

13. Linkage and indexing to the USPTO20 and EPO standard name codes.21 The goal of 
this operation is to achieve consistency and interoperability of the harmonization and 
matching files generated in this paper and future updates of the USPTO and EPO 
patent files that rely on these codes. 

The second software module deals with the matching phase. We relied on a rule-based 
approach based on the approximate string-matching algorithms discussed above and in 
Thoma and Torrisi (2007). In particular we adopted the Jaccard weighted distance operator as 

                                                

19 We implemented these operations in a Java software prototype. An equivalent SQL query including these 
operations is available under request. 

20 We extracted USPTO assignee names the so-called CONAME file. Source: USPTO, CD version March 2007. 

21 The source of the EPO standard name codes for EPO and WIPO/PCT patent dataset is the weekly EPOLINE 
files (up to July 2008 in our case). http://ebd2.epoline.org/jsp/ebd1.jsp 
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described by equation (3). Compared to the edit distance this operator has several 
improvements. Firstly, it is easier to deploy in software and it is characterized by a faster 
computation time. Secondly, it is more conservative than edit distance in establishing a 
similarity link across two different names because it allows for variation across tokens but not 
those within the tokens: we think that in the case of business entity names variation across 
tokens are more frequent with respect of those within tokens. Indeed we operated a deeper 
cleaning phase in the first software module – compared to by Magerman et al. (2006) and 
Cockburn et al. (2009) - in order to solve the business entity name variations within tokens. 
Thirdly, the operator described by equation (3) ensures an interesting trade-off of statistical 
relative weights for discriminating and non-discriminating tokens which makes it more 
suitable than edit distance for  solving name variations as those described by Box 1 and 2. 

The third software module consists of some fine tuning operations included the refinement 
of predicted matching candidates, the resolution of abbreviations and of multiple matching 
occurrences of the same patenter, and formatting of the output files to be easily processed by 
electronic spreadsheets and statistical software packages. 

4.2 Dictionary creation 

We used our software prototype to create and integrate a large dataset of patenters originating 
from a high number of countries. The final results of the procedure for the creation of a 
patenter names dictionary for EPO and PCT/WIPO dataset are depicted in the accompanying 
tables: 

• Table 2 reports the country distribution of the business applicants and applications in 
the EPO/PCT dataset. 

• Table 3 reports the country distribution of the non-business organization (NBO) 
applicants and applications in the EPO/PCT dataset. 

• Table 4 reports the country distribution of the individual applicants and applications 
in EPO/PCT dataset.22 

• Figure 2 reports the distribution across the top 18 countries of the reduction in the 
number of applicants after name harmonization using the software prototype 
described in the previous section. The overall reduction of the size of the dictionary is 
about 28.8%. 

[Tables 2-4 about here] 

[Figure 2 about here] 

                                                

22 Unlike the USPTO, the EPO does not provide a standardized identifier for this kind of applicant. Typically 
the names of individual applicants are supplied in the format “Surname”, “First name” “Middle name(s)” if any. 
Hence, the identification of the individual applicants has been based on a stepwise heuristic procedure. Starting 
from all the applicants that include a “,” in their name and have more than one token, we first excluded those 
applicants which had a typical common company word in their name such as INC, LTD and AB. Second, we 
removed those applicants with tokens related to non-business organizations. Third, we removed applicants with 
generic words such “technology”, “system”, etc. Fourth, we inspected all the applicants with more than two 
tokens and a case sensitive format such as “Smith, John” (for example) by hand. 
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4.3 Matching with business directories 

In this section we report the results of the merge of patenter names with business directories. 
In particular, we retrieved business and ownership information for the companies from 
Amadeus by Bureau Van Dijk, which collects information from approximately 10 million 
European firms and their subsidiaries at the worldwide level. 

We extracted all the historical information included in the Amadeus CD version files during 
the period 1998-2006. For each December release we retrieved information on: 

• company demographics such as country, city, region, zip code, date of 
incorporation, industry 3 digits core code. 

• unique identification number, which relies on national company identifiers such as 
VAT number, Chamber of Commerce numbers, etc. 

• ownership structure such as subsidiaries and shareholders 

• changes in the company names and some additional information.23 

We start with the EPO/PCT applicant names for two reasons: First, thanks to the US/EP 
dictionary described in the previous section we can transfer the matches to a large share of 
the patenters at the USPTO. Second, exploiting the PCT links we can propagate this 
dictionary to a significant number of patenters, those holding a large majority of the  patent 
documents in PATSTAT. 

In matching EPO/PCT patenter names to the business directories we focused only on the 
business patenters, which constitute about 63.4% of the patenter names in the EPO and about 
54.8% in the PCT system. Overall they encompass about 337 thousands original names that 
have been harmonized to about 240 thousands names according to the dictionary described in 
the previous section. About 43.3% of the patenters have just one application in the EPO and 
about 0.6% have more than 100. 

We matched patenter names only if they also came from the same country, that is, the same 
nationality of the patenting entity in the EPO/PCT dataset and company in Amadeus. The 
results of the matching to the Amadeus business directories are depicted in the following 
figures: 

• Table 5 and Figures 3a and 3b report the share of the business applicants in the EPO 
and PCT dataset that have been matched to Amadeus. 

• Figures 4a and 4b report the share of the business applicants in the EPO and PCT 
dataset that have been matched to Amadeus, weighted by their number of patent 
applications. 

We also matched the USPTO patenters to the Amadeus dataset. This task was in two steps: in 
the first we identified the matched EPO/PCT patenters (Table 5) that have been active also in 
the USPTO using equivalents link file discussed in section 3.3. In the second step, for the 

                                                

23 Additional information has included website, emails, telefax numbers, and sales size class. 
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residual USPTO patenter names not matched using this file we matched directly to Amadeus 
using the software prototype described in section 4.1. 

• Figure 5 shows the share of the business assignees in the USPTO dataset that have 
been matched to Amadeus, unweighted and weighted by their number of patent 
applications. 

[Table 5 about there] 

[Figures 3, 4, 5 about here] 

5 Robustness checks and quality analysis 

In this section we present some quality measures for the dataset developed in the previous 
section in the hope of quantifying potential false positives (Type I error) and false negatives 
(Type II error). A full-fledged analysis of this topic is beyond the scope of this paper and will 
be addressed by future research. Indeed, it requires not only a broader theoretical discussion 
about the entity matching process but also a deeper investigation of the generation of business 
directories such as Amadeus. Phenomena that potentially could influence the matching 
process include: relocation and reincorporation of the business activities, a firm’s ownership 
structure, mergers and acquisitions, and others. In this direction we limit the discussion to 
some aspects that could enable a more efficient use of the dataset developed in section 4. 

5.1 False positives 

For every matched pair we computed a quality of match score based on the similarity of the 
name and location of the information in our patent data and the data in the Amadeus business 
directory. The name similarity is measured as share of the total tokens over the total number 
of tokens in the two names, whereas the location is given either by the city or zip code 
correspondence. Table 2 shows the match score definitions.  

Table 6 

The quality of entity match score 

Score Name Location 

0 Manual check Manual check 
1 Similarity >= 50% Same 
2 30% <= Similarity <= 50% Same 
3 Similarity >= 50% Unknown 
4 Similarity >= 50% Different 
5 30% <= Similarity <= 50% Unknown 
6 10% <= Similarity <= 30% Same 
7 30% <= Similarity <= 50% Different 
8 10% <= Similarity <= 30% Unknown 
9 10% <= Similarity <= 30% Different 

 

For the EPO/PCT dataset the distribution of the match quality scores is reported in Figure 6. 
90% of the applicants are characterized by a high matching score, that is a value less than or 
equal to 4. Similarly, Figure 7 shows the distribution of the match quality scores for the 
USPTO dataset, where a similar proportion of 89% have a matching score less than or equal 
to 4. 



22 

[Figures 6 and 7 about here] 

A second quality measure is given by the patenting lag, that is the number of years since the 
birth date of the patenting firm before it files its first patent application. We would expect this 
lag to be greater than or equal to zero. A large negative patenting lag could be a symptom of 
potential false positive matching. However, performing this check is hampered by the fact 
that the company birth date information is not usually reported in business directories such as 
Amadeus. Often business directories give the date of incorporation, which is when the 
company took the limited liability legal form. This date can be later than the founding date if 
the business venture started with self-employment or other legal company forms. 

In spite of this limitation we created a patenting lag distribution relying on the incorporation 
date. This lag was computed as the difference between the filing year of the earliest patent 
and the incorporation year in Amadeus plus one year. Table 7 reports the distribution of the 
patenting lag for the different levels of the match score. Overall we have a negative patenting 
lag for about 7.4% of all the matched patenters and for 6.1% of the patenters that are active 
after year 2000, which is when Amadeus began its very wide pan-European coverage. 
Moreover, for patenters with a low match score there are visibly smaller proportion of 
negative patenting lags (values 1, 2 and 3). On the one hand, this finding shows the validity 
of the matching performed in section 4.3 and usefulness of the match score indicator. On the 
other hand, it invites further investigation of the matched names having a negative lag in 
order to check for the presence of potential false positives.24 

Table 7 

Negative patenting lag by different levels of the match score 

 All Patenters Patenters active after 2000 

Score obs % obs % 

0 1,385 13.9% 1,188 10.9% 
1 32,748 5.2% 29,748 4.6% 
2 3,819 9.1% 3,470 8.5% 
3 1,189 10.0% 1,081 6.8% 
4 11907 19.9% 9,846 7.4% 
5 164 25.0% 138 18.1% 
6 390 13.1% 360 11.4% 
7 2,098 15.2% 1,745 12.6% 
8 4 0.0% 4 0.0% 
9 0 0.0% 0 0.0% 

Overall 53,704 7.4% 47,580 6.1% 
 

A third and final analysis of the Type I error problem was performed by analyzing manually a 
sample of a hundred firm names drawn randomly from among the European business 
applicant names at the EPO.25 The dataset developed in section 4 identified 76 matched 

                                                

24 A preliminary analysis revealed that negative patenting lag was often associated with the re-incorporation of a 
company after the decision to relocate its business activities or with a merger or acquisition. 

25 The harmonization and matching operations were performed only within the sample of business applicant 
names at the EPO. Hence we used the same population to draw a random sample. 
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applicants to Amadeus, whereas 24 names were not matched. Out of these 76, three were 
false matches, that is 3.9%. In particular, they were the following: 

i) Patenter DRALORIC ELECTRONIC GMBH matched with company 
ELECTRONICS (DE715000111). Location zip or city is unknown (match score 
3). 

ii) Patenter COPRECI S COOP LTDA matched with company BATZ S COOP 
(ESF48037600). Location zip or city is matched (match score 1). 

iii) Patenter VAN BUUREN VAN SWAAY matched with company VAN SWAAY 
BEHEER (NL09085054 ) Location zip or city does not match (match score 4). 

Example i) is characterized by a high Jaccard similarity although the company name consists 
of only one non-discriminating token. In addition, the correspondence location zip and city 
were unknown and hence the value of the match score was equal to 3. In this example, adding 
further quality criteria, the user of the dataset could reduce the ambiguity of the name 
similarity. In particular names with no discriminating tokens might need to be treated 
separately.  

Example ii) is a false positive because the match is identified by one common company word 
(“COOP”) and one non-discriminating token (“S”). Moreover the correspondence of the 
location was verified so the match score was 1. This example is similar to the previous in that 
the names matched only on non-discriminating tokens. 

Example iii) shows that the match is made up by one discriminating token (“SWAAY”) and 
one not discriminating (“VAN”). However, the non-discriminating token is repeated two 
times in the patenter name which increases artificially the similarity of the two names. This 
example suggests that it might be useful to remove duplicate tokens in the names before 
matching. 

5.2 False negatives 

In general, the assessment of the Type II error (failing to match an applicant that should be 
matched) is more difficult because it requires broader definition of matching criteria. In this 
section we describe two approaches.  

The first approach deepens the analysis of the one hundred patenter names that were 
examined in the previous section. We reported that 24 patenter names out of 100 were not 
matched to any company in Amadeus. First, we found that among them were 2 individual 
applicant names and one non-business organization name, that is about 10% of the 
unmatched applicants. On the one hand, this finding shows some drawbacks in the 
identification method of the institutional type of patenter names used in Figure 3.26 On the 
other, it suggests that the real coverage of the matching depicted in Figure 4 could be even 
higher; in particular for the European patenters the actual matching to Amadeus could be as 
high as 80% of the EPO standard codes. 

                                                

26 Indeed we noted that the format “Surname, First name Middle name(s)” has not been strictly followed by the 
EPO. A full-fledged methodology could therefore be based on the matching of the individual applicant names 
with inventors of the same invention. This is left for future development. 
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Second, we found only one case of a false negative, that is: 

- Patenter name DISTEC should have been matched with DISTEC VERTRIEB VON 
ELEKTRONISCHEN BAUELEMENTEN (DE8330189835) 

This example could be explained by the presence of the non-discriminating token “DISTEC”. 
This common word generates a low similarity score in the expression of eq. (3) because 
company name is made up of four other tokens, two of them discriminating and hence with 
high statistical score. This example suggests that it might be worth exploring other token 
based similarity functions.  

Thirdly, there were 20 patenter names that could not be found in Amadeus business directory. 
The full-fledged identification of the origin of these applicants in terms of sector, age and size 
is beyond the scope of this paper. There are several explanations for the fact that these firms 
are not found in Amadeus (1998-2008). First, they may have been included in Amadeus after 
the date of our version. Second, some of these patenters are probably not limited liability 
firms. Third, their names may have changed since the patent was applied for but before they 
incorporated. Fourth, they have been incorporated in a different country from the one given 
on the patent. Fifth, they could have exited, merged and been acquired by another firm before 
the year 1998. 

The second approach for the assessment of Type II errors analyzes the names of some large 
EU firms which have reported R&D activities. Typically, the R&D process is accompanied 
by patenting activities and a large share of patenting is done by large R&D performers. Thus 
focusing on firms with R&D reduces the cost of searching for false negatives. This analysis 
involved extracting some uniquely identifying keywords from the names of some large R&D 
performers and checking whether they were matched. 

Table 8 reports a list of discriminating tokens that identify uniquely about a hundred large 
R&D firms from Europe. These tokens have been extracted from the company names of the 
top 2,197 European R&D doers.27 We selected these tokens randomly from the single token 
company names that were highly discriminating. 

The fact that these tokens are discriminating does not necessarily mean that the similarity 
measure of equation (3) scores high. For example the token “ABB” is discriminating but it is 
also statistically very frequent in the dataset, which dwarfs the weighted Jaccard similarity 
distance of equation (3). Secondly, while these words are extracted from single token 
company names in Amadeus, in the patenter names they could occur jointly with other words 
– such as generic, geographical, etc – that lower the size of the similarity index of equation 
(3). 

We report the statistical distribution of these tokens in the EPO/PCT matched dataset and the 
dataset that contains the remaining unmatched applicants – confining ourselves to patenters 
from European countries. Among the unmatched patenter names, about 6.5% of the names 
could be associated to these discriminating tokens. In other words, for about 6.5% unmatched 
patenter names, these discriminating tokens are in their words or subwords. 

[Table 8 about here] 

                                                

27 For more information about the dataset from which they were extracted, see Hall et al. (2007). 
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Broadly speaking, this percentage could be a potential proxy for Type II error. However, 
when we restricted the search only to location in the same country this percentage falls to less 
than 1%. Similarly, focusing on the patentees that have more than 2 patents the percentage is 
about 2.1%. 

Put differently, if we condition for the same country location – as we did in all the matching 
tasks – false negatives are probably a small number. In general, some false negatives could be 
associated with a discrepancy in the nationality of the patenter and the country location of the 
company in the business directory. One solution to overcome this drawback could be the 
relaxation of the matching condition requiring the same geographic location. In the current 
version of the dataset we opted for a conservative approach, assuming that there is one-to-one 
correspondence of a patenter from a given country and the legal business entity recorded in 
Amadeus in that country. 

An additional robustness check weighted the false negatives by patent counts (see again 
Table 8). The overall percentage is very small about 0.5%. In some few cases of companies 
the share of missing patent counts due to false negatives is high such as “SAFEWAY”, 
“ALPHAFORM”, “INGENTA”, “PENNON”, “SOGEFI”. However these companies are 
characterised by a limited patenting activity, that is a patent portfolio of about a dozen 
patents. 

In conclusion, the two tests conducted in this section point to consistent estimates and a small 
relative share of false negatives – less than 5% in general. Further analysis could be done by 
adjusting the distance measure described in equation (3) and complementing it with other 
similarity functions in order to improve the false negative rate further. In addition, a deeper 
investigation of the generation of business directories database such as Amadeus could 
contribute to the understanding of the unmatched patenter names. In particular, phenomena 
that have not been explored here are the relocation and reincorporation of business activities, 
firms’ ownership structures, the effects of mergers and acquisitions, and other name changes 
or reorganizations. 

6 Conclusions 

In this paper we drew on NER methods from bioinformatics and applied two different 
approaches to data integration in the context of patent information. The dictionary-based 
approach relies on the collection of large datasets of names and their variants, while the rule-
based approach articulates a set of rules to establish similarity links across different entity 
names. Additionally, we discussed how the value of existing dictionaries could be enhanced 
by using other methods to retrieve original data. Then we applied our methodology to several 
data sources, including major patent databases and business directories such as Amadeus. 

The resulting data contains around 131 thousands patent applicant names from 46 countries, 
covering approximately 58.8 percent of EPO applications and 50.6 percent of PCT 
applications by business organizations during the time period 1979 to 2008. For the US, the 
resulting dataset includes about 54 thousands assignee names and 51.3 percent of US granted 
patents during approximately the same time period. 

There are several novel elements associated with this paper and dataset. First, this paper is 
among of the first attempts to adopt insights from other domains such as bioinformatics in the 
field of the information integration of company-level data. Second, we focus on patenter 
names of major patent offices, including the EPO and the USPTO, but also the WIPO/PCT 
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database which has been rarely employed in innovation studies. Third, we relied on a pan-
European business directory (Amadeus by Bureau Van Dijk) to trace the patent-holder names 
to owning entitities. Fourth, we created a more comprehensive dataset than has been available 
hitherto that constains all the patenting activity of European firms at the EPO, USPTO and 
PCT since the 1970s. Fifth, we developed a matching methodology that relies not only on the 
name similarity of business entities, but also on such criteria as location information, age, etc.  

There are also limitations to this work that will have to be addressed in future research. First, 
our focus has been on European patent-holders and their subsidiaries whereas a large share of 
patents are filed by North American firms – US and Canada – and those from Asia – such as 
Japan, Korea, Taiwan, and increasingly China. The methodology developed in this paper 
could be extended to patenting entitites in these countries, but there are some caveats. For US 
and Canadian firms extensive business directories such as Dun & Bradstreet files or Icarus 
and Orbis by Bureau Van Dijk report data by firm establishments and not by legal business 
entities: thus for the same legal business entity there could be several establishments. The 
different structure of the business directories will require a slightly different approach to 
consolidation to the parent firms. For Asian firms we noticed that often the patenter names 
are characterised by transliteration errors at the level of a single word, which hampers a direct 
implementation of the token-based similarity measures. In this case other similarity measures 
could be used to pre-process the patenter names such as the edit/Levenshtein distance, 
Hamming distance, and others. 
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Average Average
Country N % N % N % N % EP portfolio WO portfolio
AN 286 0.1% 66 0.0% 1,096 0.1% 245 0.0% 3.83 3.71
AT 3,404 1.3% 1,936 0.9% 15,707 0.9% 7,893 0.7% 4.61 4.08
AU 4,787 1.8% 8,134 3.7% 9,236 0.5% 14,888 1.4% 1.93 1.83
BB 140 0.1% 69 0.0% 1,134 0.1% 191 0.0% 8.10 2.77
BE 2,892 1.1% 1,513 0.7% 15,421 0.9% 6,992 0.6% 5.33 4.62
BG 111 0.0% 63 0.0% 142 0.0% 80 0.0% 1.28 1.27
BM 107 0.0% 61 0.0% 298 0.0% 168 0.0% 2.79 2.75
BR 343 0.1% 254 0.1% 661 0.0% 352 0.0% 1.93 1.39
CA 5,574 2.1% 6,610 3.0% 18,404 1.0% 17,808 1.6% 3.30 2.69
CH 9,612 3.7% 5,411 2.4% 64,547 3.6% 28,326 2.6% 6.72 5.24
CN 1,337 0.5% 2,200 1.0% 3,501 0.2% 8,292 0.8% 2.62 3.77
CY 129 0.0% 148 0.1% 276 0.0% 318 0.0% 2.14 2.15
CZ 248 0.1% 253 0.1% 452 0.0% 409 0.0% 1.82 1.62
DE 37,564 14.4% 18,733 8.4% 345,386 19.3% 147,941 13.5% 9.19 7.90
DK 3,242 1.2% 3,357 1.5% 11,836 0.7% 11,629 1.1% 3.65 3.46
ES 3,286 1.3% 2,273 1.0% 7,000 0.4% 4,271 0.4% 2.13 1.88
FI 3,096 1.2% 3,209 1.4% 18,467 1.0% 17,846 1.6% 5.96 5.56
FR 21,361 8.2% 10,918 4.9% 125,162 7.0% 46,988 4.3% 5.86 4.30
GB 20,538 7.9% 17,042 7.7% 84,913 4.7% 56,743 5.2% 4.13 3.33
GR 180 0.1% 132 0.1% 274 0.0% 207 0.0% 1.52 1.57
HK 301 0.1% 16 0.0% 436 0.0% 18 0.0% 1.45 1.13
HU 633 0.2% 599 0.3% 1,596 0.1% 1,226 0.1% 2.52 2.05
IE 1,150 0.4% 1,020 0.5% 2,862 0.2% 2,578 0.2% 2.49 2.53
IL 2,500 1.0% 1,704 0.8% 4,845 0.3% 2,703 0.2% 1.94 1.59
IN 439 0.2% 577 0.3% 1,498 0.1% 2,680 0.2% 3.41 4.64
IT 17,024 6.5% 6,542 2.9% 54,688 3.1% 16,345 1.5% 3.21 2.50
JP 23,703 9.1% 17,883 8.0% 350,015 19.6% 163,365 15.0% 14.77 9.14
KR 2,977 1.1% 5,655 2.5% 22,550 1.3% 17,237 1.6% 7.57 3.05
LI 588 0.2% 62 0.0% 2,363 0.1% 78 0.0% 4.02 1.26
LU 659 0.3% 414 0.2% 2,483 0.1% 1,442 0.1% 3.77 3.48
NL 7,502 2.9% 4,460 2.0% 67,101 3.7% 41,232 3.8% 8.94 9.24
NO 2,028 0.8% 2,628 1.2% 4,785 0.3% 5,885 0.5% 2.36 2.24
NZ 598 0.2% 553 0.2% 1,046 0.1% 835 0.1% 1.75 1.51
PL 249 0.1% 195 0.1% 402 0.0% 342 0.0% 1.61 1.75
PT 204 0.1% 142 0.1% 380 0.0% 204 0.0% 1.86 1.44
RU 372 0.1% 467 0.2% 473 0.0% 597 0.1% 1.27 1.28
SE 7,487 2.9% 7,632 3.4% 35,584 2.0% 35,735 3.3% 4.75 4.68
SG 304 0.1% 432 0.2% 856 0.0% 719 0.1% 2.82 1.66
SI 151 0.1% 135 0.1% 428 0.0% 351 0.0% 2.83 2.60
SU 112 0.0% 0 0.0% 227 0.0% 0 0.0% 2.03 #DIV/0!
TR 181 0.1% 219 0.1% 468 0.0% 776 0.1% 2.59 3.54
TW 924 0.4% 101 0.0% 1,826 0.1% 220 0.0% 1.98 2.18
US 70,194 26.9% 87,431 39.3% 503,399 28.1% 423,571 38.8% 7.17 4.84
VG 267 0.1% 124 0.1% 1,158 0.1% 500 0.0% 4.34 4.03
ZA 649 0.2% 390 0.2% 1,211 0.1% 579 0.1% 1.87 1.48
Others 1,565 0.6% 868 0.4% 3,129 0.2% 1,366 0.1% 2.00 1.57

Overall 260,997 100.0% 222,628 100.0% 1,789,721 100.0% 1,092,169 100.0% 6.86 4.91

Table 2 Business applicants and applications in EPO and PCT dataset 
(distinct original names, countries with more than 100 EP applicants)

EP Applicants WO applicants EP applications WO applications



Average Average
Country N % N % N % N % EP portfolio WO portfolio
AT 130 0.7% 97 0.5% 419 0.4% 257 0.2% 3.22 2.65
AU 506 2.7% 671 3.5% 2,535 2.6% 3,708 3.2% 5.01 5.53
BE 332 1.8% 244 1.3% 2,198 2.3% 1,184 1.0% 6.62 4.85
CA 711 3.8% 850 4.4% 2,478 2.6% 3,498 3.0% 3.49 4.12
CH 419 2.3% 355 1.9% 1,767 1.8% 1,227 1.0% 4.22 3.46
CN 345 1.9% 578 3.0% 684 0.7% 1,778 1.5% 1.98 3.08
DE 2,014 10.9% 1,377 7.2% 11,494 11.9% 8,718 7.5% 5.71 6.33
DK 129 0.7% 152 0.8% 420 0.4% 530 0.5% 3.26 3.49
ES 311 1.7% 393 2.1% 909 0.9% 1,653 1.4% 2.92 4.21
FR 1,558 8.4% 1,182 6.2% 14,389 14.8% 9,122 7.8% 9.24 7.72
GB 1,323 7.1% 1,370 7.1% 6,624 6.8% 7,254 6.2% 5.01 5.29
IL 204 1.1% 127 0.7% 956 1.0% 444 0.4% 4.69 3.50
IN 126 0.7% 188 1.0% 727 0.8% 1,093 0.9% 5.77 5.81
IT 491 2.6% 354 1.8% 1,885 1.9% 1,385 1.2% 3.84 3.91
JP 1,683 9.1% 1,485 7.7% 7,320 7.6% 9,541 8.2% 4.35 6.42
KR 409 2.2% 557 2.9% 1,481 1.5% 2,586 2.2% 3.62 4.64
NL 436 2.4% 393 2.1% 2,327 2.4% 1,892 1.6% 5.34 4.81
PL 119 0.6% 87 0.5% 242 0.2% 170 0.1% 2.03 1.95
RU 125 0.7% 87 0.5% 226 0.2% 145 0.1% 1.81 1.67
SE 143 0.8% 151 0.8% 274 0.3% 285 0.2% 1.92 1.89
SU 159 0.9% 2 0.0% 350 0.4% 9 0.0% 2.20 4.50
US 5,892 31.8% 7,618 39.8% 34,777 35.9% 58,106 49.7% 5.90 7.63
Others 980 5.3% 845 4.4% 2,429 2.5% 2,371 2.0% 2.48 2.81

Overall 18,544 100.0% 19,162 100.0% 96,910 100.0% 116,956 100.0% 5.23 6.10
Notes: *It includes also those individual applicants having the suffix "Prof." in their name.

Table 3 Non-business organization applicants and applications in EPO and PCT dataset 
(distinct original names, countries with more than 100 EP applicants)*

EP Applicants WO applicants EP applications WO applications



Average Average
Country N % N % N % N % EP portfolio WO portfolio
AR 243 0.2% 69 0.0% 291 0.2% 73 0.0% 1.20 1.06
AT 3,165 2.4% 2,029 1.2% 5,002 2.9% 2,943 1.4% 1.58 1.45
AU 2,991 2.3% 6,713 4.1% 3,530 2.0% 7,878 3.9% 1.18 1.17
BE 1,702 1.3% 1,017 0.6% 2,191 1.3% 1,206 0.6% 1.29 1.19
BG 120 0.1% 283 0.2% 134 0.1% 328 0.2% 1.12 1.16
BR 302 0.2% 506 0.3% 329 0.2% 557 0.3% 1.09 1.10
CA 2,895 2.2% 5,072 3.1% 3,645 2.1% 6,101 3.0% 1.26 1.20
CH 4,687 3.6% 3,121 1.9% 6,937 4.0% 4,166 2.1% 1.48 1.33
CN 1,232 0.9% 4,727 2.9% 1,401 0.8% 5,966 2.9% 1.14 1.26
CZ 267 0.2% 530 0.3% 316 0.2% 626 0.3% 1.18 1.18
DE 25,515 19.3% 15,279 9.3% 39,302 22.5% 21,297 10.5% 1.54 1.39
DK 1,434 1.1% 1,832 1.1% 1,810 1.0% 2,272 1.1% 1.26 1.24
ES 2,791 2.1% 2,791 1.7% 3,384 1.9% 3,219 1.6% 1.21 1.15
FI 1,270 1.0% 1,967 1.2% 1,588 0.9% 2,512 1.2% 1.25 1.28
FR 12,552 9.5% 8,814 5.4% 16,519 9.5% 11,121 5.5% 1.32 1.26
GB 8,481 6.4% 9,863 6.0% 10,392 5.9% 11,955 5.9% 1.23 1.21
GR 619 0.5% 597 0.4% 732 0.4% 736 0.4% 1.18 1.23
HK 134 0.1% 13 0.0% 182 0.1% 13 0.0% 1.36 1.00
HR 109 0.1% 353 0.2% 125 0.1% 422 0.2% 1.15 1.20
HU 837 0.6% 1,472 0.9% 986 0.6% 1,833 0.9% 1.18 1.25
IE 602 0.5% 602 0.4% 740 0.4% 734 0.4% 1.23 1.22
IL 1,265 1.0% 1,141 0.7% 1,523 0.9% 1,283 0.6% 1.20 1.12
IN 384 0.3% 1,099 0.7% 449 0.3% 1,578 0.8% 1.17 1.44
IT 8,263 6.3% 4,780 2.9% 10,637 6.1% 5,853 2.9% 1.29 1.22
JP 6,023 4.6% 7,436 4.5% 9,367 5.4% 10,748 5.3% 1.56 1.45
KR 2,135 1.6% 7,842 4.8% 2,540 1.5% 9,768 4.8% 1.19 1.25
MX 132 0.1% 441 0.3% 142 0.1% 506 0.2% 1.08 1.15
NL 2,495 1.9% 1,784 1.1% 3,216 1.8% 2169 1.1% 1.29 1.22
NO 1,077 0.8% 1,671 1.0% 1,302 0.7% 2068 1.0% 1.21 1.24
NZ 350 0.3% 414 0.3% 401 0.2% 433 0.2% 1.15 1.05
PL 298 0.2% 680 0.4% 351 0.2% 821 0.4% 1.18 1.21
PT 181 0.1% 160 0.1% 202 0.1% 189 0.1% 1.12 1.18
RU 923 0.7% 2,683 1.6% 1,101 0.6% 3472 1.7% 1.19 1.29
SE 4,758 3.6% 5,937 3.6% 6,149 3.5% 7577 3.7% 1.29 1.28
SI 157 0.1% 231 0.1% 195 0.1% 276 0.1% 1.24 1.19
SU 288 0.2% 5 0.0% 348 0.2% 5 0.0% 1.21 1.00
TR 132 0.1% 281 0.2% 156 0.1% 328 0.2% 1.18 1.17
TW 1,431 1.1% 144 0.1% 2,056 1.2% 180 0.1% 1.44 1.25
US 27,442 20.8% 56,118 34.1% 34,846 19.9% 69714 34.3% 1.27 1.24
YU 159 0.1% 119 0.1% 218 0.1% 130 0.1% 1.37 1.09
ZA 602 0.5% 1,439 0.9% 681 0.4% 1628 0.8% 1.13 1.13
Others 1484 1.1% 2453 1.5% 1823 1.0% 2954 1.5% 1.23 1.20

Overall 131,923 100.0% 164,503 100.0% 174,732 101.4% 203,054 102.3% 1.32 1.23

Table 4 Individual applicants and applications in EPO and PCT dataset 
(distinct original names, countries with more than 100 EP applicants)

EP Applicants WO applicants EP applications WO applications



Average Average
Country N % N % N % N % EP portfolio WO portfolio
Not available 5 0.0% 4 0.0% 637 0.1% 66 0.0% 0.01 0.06
AN 1 0.0% 0 0.0% 2 0.0% 0 0.0% 0.50 4.08
AT 2,502 1.9% 1,343 1.8% 13,462 1.3% 6,744 1.2% 0.19 1.52
AU 226 0.2% 203 0.3% 565 0.1% 776 0.1% 0.40 3.26
BE 2,526 1.9% 1,238 1.6% 14,081 1.3% 6,423 1.1% 0.18 1.46
BG 8 0.0% 5 0.0% 5 0.0% 5 0.0% 1.60 13.04
BM 1 0.0% 1 0.0% 3 0.0% 4 0.0% 0.33 2.72
CA 437 0.3% 325 0.4% 2,415 0.2% 2,039 0.4% 0.18 1.48
CH 4,329 3.3% 2,372 3.1% 49,654 4.6% 21,334 3.8% 0.09 0.71
CN 10 0.0% 7 0.0% 46 0.0% 83 0.0% 0.22 1.77
CY 2 0.0% 2 0.0% 3 0.0% 4 0.0% 0.67 5.43
CZ 159 0.1% 109 0.1% 267 0.0% 241 0.0% 0.60 4.85
DD 3 0.0% 0 0.0% 16 0.0% 0 0.0% 0.19 1.53
DE 31,779 24.2% 15,247 20.0% 326,515 30.6% 142,407 25.3% 0.10 0.79
DK 3,016 2.3% 2,518 3.3% 10,702 1.0% 10,534 1.9% 0.28 2.30
EE 11 0.0% 11 0.0% 7 0.0% 12 0.0% 1.57 12.81
ES 2,455 1.9% 1,334 1.8% 5,371 0.5% 3,078 0.5% 0.46 3.73
FI 2,583 2.0% 2,059 2.7% 16,700 1.6% 15,951 2.8% 0.15 1.26
FO 10 0.0% 9 0.0% 4,172 0.4% 874 0.2% 0.00 0.02
FR 16,627 12.7% 8,244 10.8% 115,648 10.8% 44,582 7.9% 0.14 1.17
GB 17,260 13.2% 11,551 15.2% 76,166 7.1% 49,473 8.8% 0.23 1.85
GR 105 0.1% 71 0.1% 159 0.0% 132 0.0% 0.66 5.38
HR 24 0.0% 15 0.0% 138 0.0% 112 0.0% 0.17 1.42
HU 187 0.1% 150 0.2% 766 0.1% 581 0.1% 0.24 1.99
IE 545 0.4% 404 0.5% 1,556 0.1% 1,372 0.2% 0.35 2.86
IL 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1.00 8.15
IN 34 0.0% 25 0.0% 25 0.0% 64 0.0% 1.36 11.09
IT 14,100 10.8% 4,837 6.4% 48,675 4.6% 14,106 2.5% 0.29 2.36
JP 1,890 1.4% 1,114 1.5% 55,438 5.2% 21,637 3.8% 0.03 0.28
KR 265 0.2% 165 0.2% 9,190 0.9% 2,950 0.5% 0.03 0.24
LI 1 0.0% 0 0.0% 8 0.0% 0 0.0% 0.13 1.02
LT 5 0.0% 1 0.0% 6 0.0% 2 0.0% 0.83 6.79
LU 106 0.1% 58 0.1% 859 0.1% 460 0.1% 0.12 1.01
LV 4 0.0% 3 0.0% 2 0.0% 4 0.0% 2.00 16.30
NL 6,446 4.9% 3,365 4.4% 63,863 6.0% 39,386 7.0% 0.10 0.82
NO 2,427 1.9% 2,187 2.9% 4,386 0.4% 5,325 0.9% 0.55 4.51
PL 191 0.1% 114 0.1% 353 0.0% 263 0.0% 0.54 4.41
PT 95 0.1% 48 0.1% 189 0.0% 91 0.0% 0.50 4.10
RO 18 0.0% 14 0.0% 15 0.0% 14 0.0% 1.20 9.78
SE 6,561 5.0% 5,502 7.2% 32,009 3.0% 32,342 5.8% 0.20 1.67
SI 94 0.1% 67 0.1% 242 0.0% 174 0.0% 0.39 3.17
SK 27 0.0% 24 0.0% 29 0.0% 44 0.0% 0.93 7.59
TR 2 0.0% 1 0.0% 2 0.0% 3 0.0% 1.00 8.15
TW 1 0.0% 0 0.0% 5 0.0% 0 0.0% 0.20 1.63
US 13,985 10.7% 11,305 14.9% 214,052 20.0% 138,353 24.6% 0.07 0.53
YU 1 0.0% 1 0.0% 2 0.0% 3 0.0% 0.50 4.08

Overall 131,065 76,054 1,068,407 562,049 0.12 0.14

Table 5 Matched business applicants and applications in EPO and PCT dataset 
EP Applicants WO applicants EP applications WO applications



Country

Unique 
identifying token 
for company All Matched Unmatched

Unmatched; 
same country

Unmatched; 
with 3+ pats Matched Unmatched

% 
Unmatched 

CH ABB 599 504 95 6 27 6,839 350 4.9%
DE SIEMENS 382 371 11 1 6 37,452 69 0.2%
CH ROCHE 196 165 31 9 14 8,554 71 0.8%
FR ALCATEL 185 178 7 0 1 10,229 10 0.1%
GB SMITHKLINE 120 116 4 0 0 5,249 5 0.1%
DE BASF 118 118 0 0 0 16,161 0 0.0%
FI NOKIA 117 114 3 5 3 9,521 9 0.1%
FR AVENTIS 113 113 0 0 0 2,680 0 0.0%
FR ALSTOM 110 110 0 0 0 1,670 0 0.0%
FR THALES 96 93 3 0 2 1,374 11 0.8%
FR RENAULT 83 82 1 1 0 2,744 1 0.0%
BE SOLVAY 83 76 7 0 4 1,792 30 1.6%
IT PIRELLI 78 78 0 0 0 743 0 0.0%
DE THYSSENKRUPP 77 77 0 0 0 617 0 0.0%
SE VOLVO 74 72 2 1 1 1,559 8 0.5%
DE DEGUSSA 63 60 3 0 3 3,112 13 0.4%
SE SANDVIK 49 40 9 4 3 1,115 25 2.2%
CH CIBA 48 38 10 0 3 6,217 22 0.4%
DK DANISCO 46 46 0 0 0 294 0 0.0%
CH NOVARTIS 42 40 2 0 2 4,553 55 1.2%
GB RECKITT 41 39 2 0 0 632 3 0.5%
FR PEUGEOT 38 37 1 1 1 2,416 21 0.9%
IT FIAT 37 36 1 0 0 1,109 1 0.1%
DK DANFOSS 36 35 1 0 0 322 2 0.6%
CH SERONO 30 29 1 0 1 325 3 0.9%
GB UNILEVER 30 30 0 0 0 9,135 0 0.0%
GB INVENSYS 29 29 0 0 0 106 0 0.0%
GB KENWOOD 29 28 1 0 0 273 1 0.4%
CH CLARIANT 28 28 0 0 0 1,299 0 0.0%
GB ASTRAZENECA 27 27 0 0 0 2,056 0 0.0%
FR DASSAULT 26 26 0 0 0 182 0 0.0%
GB COURTAULDS 23 22 1 0 0 187 1 0.5%
IT EDISON 20 18 2 0 0 293 1 0.3%
FR DANONE 19 18 1 1 0 125 1 0.8%
DE VOLKSWAGEN 19 19 0 0 0 2,015 0 0.0%
CH SYNGENTA 18 18 0 0 0 1,006 0 0.0%
DE BEIERSDORF 16 16 0 0 0 1,391 0 0.0%
GB SEVERN 16 16 0 0 0 30 0 0.0%
GB HAMWORTHY 15 13 2 0 0 14 2 12.5%
FR GENESYS 14 14 0 0 0 216 0 0.0%
DE GROHE 13 13 0 0 0 443 0 0.0%
GB DOLPHIN 12 12 0 0 0 16 0 0.0%
GB REUTERS 12 9 3 0 0 15 4 21.1%
IT SAIPEM 12 12 0 0 0 74 0 0.0%
FR SOMFY 12 12 0 0 0 260 0 0.0%
GB INNOVATA 11 11 0 0 0 35 0 0.0%
GB WESSEX 10 10 0 0 0 11 0 0.0%
IT FINMECCANICA 9 9 0 0 0 83 0 0.0%
GB HOZELOCK 9 9 0 0 0 30 0 0.0%
BE BTICINO 8 8 0 0 0 131 0 0.0%
DE HOCHTIEF 8 8 0 0 0 48 0 0.0%
GB PLASMON 8 8 0 0 0 32 0 0.0%
IT DATALOGIC 7 7 0 0 0 112 0 0.0%
GB DOMNICK 7 7 0 0 0 27 0 0.0%
IT INDESIT 7 7 0 0 0 111 0 0.0%
GB LINX 7 6 1 0 0 151 1 0.7%
CH LOGITEC 7 7 0 0 0 17 0 0.0%

Number of names in various datasets
Table 8 Discriminating tokens from the company name of the top EU R&D performers

Weighted by patent counts



GB RENISHAW 7 7 0 0 0 358 0 0.0%
GB CHIROSCIENCE 6 6 0 0 0 7 0 0.0%
GB MEDEVA 6 6 0 0 0 26 0 0.0%
IT SOGEFI 6 5 1 0 1 15 6 28.6%
GB TEPNEL 6 6 0 0 0 13 0 0.0%
IT BENETTON 5 5 0 0 0 90 0 0.0%
IT GEWISS 5 5 0 0 0 60 0 0.0%
GB KALAMAZOO 5 5 0 0 0 5 0 0.0%
GB LATCHWAYS 5 5 0 0 0 38 0 0.0%
GB SPIRENT 5 5 0 0 0 22 0 0.0%
GB UMBRO 5 5 0 0 0 6 0 0.0%
GB XENOVA 5 5 0 0 0 27 0 0.0%
GB ACAMBIS 4 4 0 0 0 23 0 0.0%
IT BEGHELLI 4 4 0 0 0 37 0 0.0%
GB INSIGNIA 4 4 0 0 0 2 0 0.0%
GB PHYTOPHARM 4 3 1 0 0 16 1 5.9%
GB PROTHERICS 4 4 0 0 0 9 0 0.0%
GB SAFEWAY 4 3 1 1 0 4 1 20.0%
GB TRANSENSE 4 4 0 0 0 24 0 0.0%
GB VICTREX 4 4 0 0 0 30 0 0.0%
FR VIVENDI 3 3 0 0 0 2 0 0.0%
ES ACERINOX 2 2 0 0 0 3 0 0.0%
GB MINORPLANET 2 2 0 0 0 8 0 0.0%
GB RADSTONE 2 2 0 0 0 2 0 0.0%
GB SKYEPHARMA 2 2 0 0 0 27 0 0.0%
SE SWITCHCORE 2 2 0 0 0 3 0 0.0%
IT TARGETTI 2 2 0 0 0 21 0 0.0%
ES TELEFONICA 2 2 0 0 0 56 0 0.0%
GB ZOTEFOAMS 2 2 0 0 0 1 0 0.0%
DE ALPHAFORM 1 0 1 0 0 0 2 100.0%
GB CASSIDY 1 1 0 0 0 1 0 0.0%
GB DATONG 1 1 0 0 0 1 0 0.0%
NL GETRONICS 1 1 0 0 0 1 0 0.0%
GB INGENTA 1 0 1 0 1 0 3 100.0%
IT NATUZZI 1 1 0 0 0 1 0 0.0%
GB NETCALL 1 1 0 0 0 2 0 0.0%
GB PENNON 1 0 1 1 0 0 1 100.0%
GB PIXOLOGY 1 1 0 0 0 4 0 0.0%
FR AVERYS 0 0 0 0 0 0 0 n.d.
DE AZEGO 0 0 0 0 0 0 0 n.d.
GB BAKKAVOR 0 0 0 0 0 0 0 n.d.
GB FLOMERICS 0 0 0 0 0 0 0 n.d.
DE HOECHST 0 0 0 0 0 0 0 n.d.
GB INTERCLUBNET 0 0 0 0 0 0 0 n.d.
GB KELDA 0 0 0 0 0 0 0 n.d.
GB MERANT 0 0 0 0 0 0 0 n.d.
GB OCTROI 0 0 0 0 0 0 0 n.d.
GB ONCOCENE 0 0 0 0 0 0 0 n.d.
GB QSP 0 0 0 0 0 0 0 n.d.
GB QUADNETICS 0 0 0 0 0 0 0 n.d.
GB SENETEK 0 0 0 0 0 0 0 n.d.
GB SINOVATION 0 0 0 0 0 0 0 n.d.
GB SPECTRIS 0 0 0 0 0 0 0 n.d.
GB STATPRO 0 0 0 0 0 0 0 n.d.
GB UTILITEC 0 0 0 0 0 0 0 n.d.
BE ZENITEL 0 0 0 0 0 0 0 n.d.

Overall 3,475 3,264 211 31 73 148,148 734 0.5%
as % of the total 93.9% 6.1% 0.9% 2.1%
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Figure 2
Reduction in the size of the name file after harmonization of the EPO/PCT 
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Figure 3b: Share of business applicant names matched 
(active in year 2001 or later, top 18 EU countries)
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Figure 4a: Share of business applicant names matched, weighted 
by number of applications (top 18 EU countries)
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Figure 6: Distribution of the match score for EPO/PCT patenter 
names matched to the Amadeus business directory

all applicants

applicants active in 2001+
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Figure 7: Distribution of the match score for the USPTO assignee 
names matched to the Amadeus business directory
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